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Abstract MapReduce is a programming framework for distributed systems
that is used to automatically parallelize and schedule the tasks to distributed
resources. MapReduce is widely used in data centers to process enterprise
databases and Big Data. This paper presents a novel MapReduce accelera-
tor platform based on FPGAs that can be used to speedup the processing
of the MapReduce data. The proposed platform consists of specialized hard-
ware accelerators for the Map tasks and a shared configurable accelerator for
the Reduce tasks. The hardware accelerators for the Map tasks are developed
using a modified source-to-source High-level Synthesis (HLS) tool while the
Reduce accelerator is based on a novel hashing scheme. The proposed scheme
is implemented, mapped and evaluated to a Virtex 7 FGPA. The performance
evaluation is based on a benchmark suite that represent typical MapReduce
applications and it shows that the proposed scheme can achieve up to 2 or-
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ders of magnitude energy reduction compared to General Purpose Processors
(GPPs).

Keywords MapReduce · accelerator · data center · FPGAs · reconfigurable
computing

1 Introduction

Emerging web applications like streaming video, social networks, IoT, Bib
Data and cloud computing has created the need for warehouse scale data cen-
ters hosting thousands of servers [5]. One of the main programming frameworks
for processing large data sets in the data centers and other clusters of com-
puters is the MapReduce framework [4]. MapReduce is a programming model
for processing large data sets using high number of nodes. The user specifies
the Map and the Reduce functions and the MapReduce scheduler performs
the distribution of the tasks to the processors. One of the main advantages of
the MapReduce framework is that it can be hosted in heterogeneous clusters
consisting of di↵erent types of processors. The majority of the data centers
are based on high performance General Purpose Processors (GPPs) such as
Intel Xeon, AMD Opteron and/or IBM Power processors. However, the main
drawback of these processors is that they consume high amount of power.

The power consumption in the data centers is one of the most challenging
constraint that need to be addressed in order data center operators to be able
to sustain the increasing network tra�c. According to Greenpeace’s Make IT
Green report [3], it is estimated that the global demand for electricity from
data centers was around 330bn kWh in 2007 (almost the same amount of
electricity consumed by UK). This demand in power consumption is projected
to more than triple by 2020 (more than 1000bn kWh). A high portion of this
power is consumed by the servers (servers consume around 40% of the total
IT power [2]).

The power consumption of the data centers has also a major impact on the
environment. In 2007, data centers accounted for 14% of the total ICT green-
house gases (GHG) emissions (or 2% of the global GHG), and it is expected
to grow up to 18% by 2020 [1]. The global data center footprint in greenhouse
gases emissions was 116 Metric Tonne Carbon Dioxide (MtCO2e) in 2007 and
this is expected to more than double by 2020 to 257 MtCO2e, making it the
fastest-growing contributor to the ICT sector carbon footprint.

However, when the MapReduce framework is mapped to typical high per-
formance processors or low-power embedded processors, many resources are
consumed for the mapping of the tasks to the cores and the reduction functions
of the MapReduce framework.

In this paper an integrated platform for the e�cient acceleration of ap-
plications based on MapReduce is performed. The proposed platform allows
the e�cient mapping of MapReduce applications in FPGAs that allows the
speedup of the applications and the significant reduction of the power con-
sumption compared with typical server processors. The proposed platform is
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used to accelerate both the Map and the Reduce tasks. In the latter case, a
configurable Reduce co-processor is developed that can be used to o✏oad the
processor from the Reduce tasks. The co-processor that has been developed
can be configured to meet the di↵erent processing requirements depending
on the application requirements. In the case of the Map tasks, an integrated
framework is proposed that allows the e�cient development of specialized Map
accelerators using an extended High Level Synthesis toolflow. Therefore, these
accelerators can be easily customized based on the applications requirements.

To evaluate the proposed architecture, the hardware accelerator has been
implemented in a Virtex 7 FPGA. The proposed MapReduce accelerator can
be hosted in an FPGA located inside a typical rack in data centers. The
performance evaluation using a benchmark of typical MapReduce applications
shows that the proposed platform can achieve up to 2 orders of magnitude
lower energy consumption compared to typical processors.

Overall the main contributions of the paper are the followings:

– An integrated platform based on FPGAs for the e�cient acceleration of
MapReduce applications in data centers

– A configurable Reduce co-processor that can be used to speedup the pro-
cessing of the Reduce tasks

– An integrated toolflow that allows the automatic development of special-
ized Map accelerators by extending with several directives a commercial
HLS tool

– E�cient mapping and implementation of the proposed architecture to a
Virtex 7 FPGA board

– Performance evaluation using the Phoenix MapReduce framework showing
up to 2 orders of magnitude lower energy consumption.

The paper is organized in the following way: Section II presents the related
work on the mapping of cloud applications in FPGAs. Section III presents the
MapReduce framework and the tasks that are o↵-loaded into the hardware
acceleration unit. Section IV presents the HLS MapReduce flow for the cre-
ation of the Map accelerators for specific Map tasks. Section V presents the
configurable Reduce accelerator that can be tuned based on the application
requirements. Section VI presents the performance evaluation in terms of exe-
cution time, area and power consumption. Finally the conclusions of this work
are drawn in Section VII.

2 Related work

In [10], a reconfigurable MapReduce framework is presented but the proposed
scheme is implemented as a custom design that is used to implement only the
RankBoost application entirely on an FPGA. Both of the Map and Reduce
tasks for the specific application have been mapped to configurable logic and
thus for any new application a new design has to be implemented.
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In [12] a MapReduce Framework on FPGA accelerated commodity hard-
ware is presented where a cluster of worker nodes is designed for the MapRe-
duce framework, and each worker node consists of commodity hardware and
special hardware. However, in this case specialized accelerators have been de-
veloped for specific MapReduce applications that does not allow easy modifi-
cations of the applications.

Microsoft has also recently presented a reconfigurable fabric for accelerating
large-scale data center services in [7]. The FPGA ared placed into each server
accessible through PCIe, and wired directly to other FPGAs with pairs of 10
Gb SAS cables. However, the specific architecture is only used to accelerate
the web search engine applications and cannot be easily extended to other
applications.

The main advantage of our scheme is that we have developed the required
toolflow based on an extension of the HLS tool to support the MapReduce
structures in order to facilitate the e�cient development of MapReduce ap-
plications directly from the source files. Therefore, using the proposed scheme
we can achieve both the high performance of the hardware and the flexibility
of the typical software development in data centers.

3 The Phoenix MapReduce framework

One of the most widely used frameworks that are hosted in the data centers
is the MapReduce framework. MapReduce is a programming framework for
processing and generating large data sets [4]. Users specify a Map function
that processes a key/value pair to generate a set of intermediate key/value
pairs, and a Reduce function that merges all intermediate values associated
with the same intermediate key. Finally, the last stage merge together all the
key/value pairs (Figure 1).

Programs written in this functional style are automatically parallelized and
executed on a large cluster of commodity machines. The run-time system takes
care of the details of partitioning the input data, scheduling the program’s ex-
ecution across a set of machines, handling machine failures, and managing
the required inter-machine communication. This allows programmers without
any experience with parallel and distributed systems to easily utilize the re-
sources of a large distributed system. In fact, many of the cloud computing
applications are based on the MapReduce framework [4].

The MapReduce framework has been also implemented as a programming
framework for multi-core architectures by Stanford University (called Phoenix
MapReduce) [8]. Phoenix MapReduce framework uses threads to spawn par-
allel Map or Reduce tasks. It also uses shared-memory bu↵ers to facilitate
communication without excessive data copying. The runtime schedules tasks
dynamically across the available processors in order to achieve load balanc-
ing and maximizing task throughput. Locality is managed by adjusting the
granularity and assignment of parallel tasks. Google’s MapReduce implemen-
tation facilitates processing of Terabytes on clusters with thousands of nodes.
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Map Reduce Example

• Counting the number of occurrences of each word in a 
large collection of documents (typical application for site 
indexing in search engines)

• The map function emits each word plus an associated 
count of occurrences (e.g. ‘1’).

• The reduce function sums together all counts emitted for a 
particular word.

Christoforos Kachris, CloudComp, Vienna, 2012 19
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Fig. 1 The MapReduce programming framework

The Phoenix MapReduce implementation is based on the same principles but
targets shared-memory systems such as multi-core chips and symmetric multi-
processors. The main advantage of the Phoenix MapReduce framework is that
it can provide a simple, functional expression of the algorithm and leaving par-
allelization and scheduling to the run-time system and thus making parallel
programming much easier.

4 HLS MapReduce tooflow architecture

In this paper we propose an integrated platform for the e�cient acceleration
of the MapReduce application in data centers by utilizing FPGAs in order to
reduce the power consumption and increase the performance of the applica-
tions. In most of the MapReduce applications the Map functions are di↵erent
for each application while the Reduce functions in most of the cases are com-
mon (i.e. merging of key/value pairs).

The proposed scheme addresses both of these tasks. A novel toolflow has
been developed that is used to generate accelerators for the Map tasks by
utilizing High Level Synthesis tools (HLS). In that case, a commercial HLS
tool has been extended to support data type structures that are used in the
Map tasks. Using the HLS toolflow, the proposed platform provide both flex-
ibility (i.e. the accelerators can be easily modified to support other functions)
and high performance. In the case of the Reduce tasks, a special Reduce co-
processor has been developed that can be configured to merge the key/value
pairs based on the application requirements.

For the Map tasks, we propose the complete decoupling of MapReduce’s
tasks data-paths to distinct buses, accessed from individual processing engines,
eliminating the necessity of the supervisor on-board CPU, i.e. the processor-
centric SoC. Such an approach implies a holistic C/C++ to RTL domain-level
MapReduce transition. In this work, we employ HLS tools as a state-of-art
system-level implementation toolflow, in order to examine the performance
exploitation options, yet constrained by the HLS limitations of such a complex
framework.

Using the extended HLS toolflow, we create customized Map accelerators
that exploit high data locality and thus eliminate the need of large shared-
memory architectures or distributed systems. Instead of brute-force arbitrary
splitting the input data to multiple subsets for further scheduling to CPUs,
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Fig. 2 HLSMapReduceFlow dataflow architecture: Every dataflow computation node is
working in its unique memory. The system memory is partitioned to k-port and j-port banks
for the k -map and j -reduce tasks respectively.

we select to split the input according to the application’s data processing flow,
in a way that optimized chunks of data are processed independently by dis-
tinct accelerators. Using this approach we manage to increase the system’s
throughput by a) increasing data locality, b) decreasing inter-connection la-
tency among computation nodes and c) increasing computation parallelism by
exploiting dataflow processing.

Specifically, we investigate the optimal point of dataflow processing for
every application, i.e. splitting and scheduling is based on control-flow-graph
(CFG), data-flow-graph (DFG) and variable liveness analysis (LA). With these
information we built the corresponding optimal Map accelerator engines. Fig-
ure 2(a) shows the basic HLSMapReduceFlow architecture. While, this looks
similar to the original Phoenix architecture, we highlight in Figure 2(b) the
novel architecture modifications of our approach. Firstly, the on-board avail-
able block RAM (BRAM) of the FPGA is organized in distinct memory banks.
Every bank has its own unique address and data bus, while it is accessed by
only one computation node. This scheme allows for full parallel simultaneous
operation of the computation nodes in FPGA.

The critical step of this procedure relies on the e�cient mapping of applica-
tion’s computation paths which have the potential of parallelism. For this step
we employ the Vivado HLS tool. Apart from typical high level synthesis steps,
i.e. resource binding, scheduling etc. Vivado HLS provides a high number of
architecture exploration options through the source code annotation with spe-
cial pre-processor directives. In this work we force the exploration with the
DATAFLOW, INLINE and ARRAY PARTITION directives.

Firstly we employ the partition, map and reshape directives in order to
re-configure arrays on the interface they are accessed. Arrays are partitioned
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into multiple smaller arrays, each implemented with its own interface. This
includes the ability to partition the array into fine grain elements. On the
function interface, this results in a unique port for every element in the array.
This provides maximum parallel access, but creates many more ports and may
introduce routing issues in the hierarchy above. By partitioning the arrays,
on which input data of every map task are stored, we reduce the possibility
of simultaneous access of the same data, given the inherent locality of the
application, which may exploit parallelism. Locality is managed by adjusting
the granularity and assignment of parallel tasks.

Algorithm

Basic-block/ Data 
Lifetime Analysis 

Data-flow 
Processing 
Exploration

Optimal Data-
flow Processing 

architecture

Control-flow Graph

Vivado HLS
 (LLVM back-end)

(Apply Pipeline, Dataflow, 
Array-partition, Inline 

Vivado directives)

Fig. 3 Forcing dataflow exploration from control-flow algorithm description with Vivado
HLS
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After having partitioned the input memory, we force the micro-architecture
exploration within Vivado HLS, following a dataflow computation model. From
the definition back in 80’s [11], we consider dataflow machines to be all pro-
grammable computers of which the hardware is optimized for fine-grain data-
driven. Fine grain means that the processes that run in parallel are approx-
imately of the size of a conventional machine code instruction. We deploy a
fully spatial architecture for every map task by applying recursive inline op-
tion of Vivado HLS, i.e. #pragma AP inline recursive. Although this approach
leads to increased resources utilization, it allows for parallel instances of shared
sub-functions and removed hierarchy of sub-functions, which leads to logic op-
timization across function boundaries and improved latency/interval by the
reduction of function call overhead.

After the above optimizations, we have already forced the creation of fine-
grain fully-parallel map tasks which does not share neither data nor compu-
tation elements among them. The last optimization of the proposed scheme
deals with the controlling of the the way the input data are fed to these tasks.
We force a dataflow approach. Figure 3 shows the basic idea behind this ap-
proach. The input code is decomposed by Vivado’s back-end LLVM compiler
to basic blocks, i.e. single-entry single-exit section of code, connected through
a control-flow network, i.e. control-flow-graph (CFG). Having already applied
above optimizations, we further force the dataflow optimization, i.e. #pragma
AP dataflow which takes a series of sequential tasks (functions and or loops)
and creates a parallel process architecture from it. Dataflow optimization in
Vivado HLS is a very powerful method for improving design throughput.

4.1 HLS MapReduce Flow Methodology for Vivado-HLS

Figure 4 shows an overview of the proposed HLSMapReduceFlow design
and verification flow. The flow is based on Xilinx Vivado-HLS, a state-of-
art and industrial strength HLS tool. The HLSMapReduceFlow extension
is applied explicitly to the high-level source code of the application, thus it
keeps minimum implementation overhead to the designers. A source-to-source
code modification stage is the step where the original code is transformed
to synthesizable one. These transformations cover limitations regarding the
lack of dynamic memory management support, pointer arithmetic, complete
ANCI C functions etc, in Vivado HLS. Moreover this step includes the pro-
cess of architecture optimization directives insertion. Currently, this step is
performed manually. An automated flow is considered a highly useful utility
for wide and transparent adoption in data centers deployment. The trans-
formed code is augmented by the HLSMapReduceFlow function calls, i.e.
Emit Intermediate accelerator(key,value) and it is synthesized into RTL im-
plementation through the back-end of Vivado HLS tool.
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Fig. 4 Proposed extension on Vivado HLS flow to support MapReduce framework for
FPGA-based systems.

Table 1 Applications Characterization

Domain Kernel Description Parameters Bytes/Iter.

Image Processing Histogram Determine frequency of image RGB channels. M
size

= 640⇥480 307,200
Scientific Computing Matrix Mul. Dense integer matrix multiplication. M

size

= 100⇥100 40,000
Enterprise Computing String Match Search file with keys for 4 encrypted words. N

keys

= 307,200 307,200
Enterprise Computing Word Count Counts occurrence frequency of words in file. N

words

= 50,000 90,094
Artificial Intelligence Linear Regr. Compute the best fit line for a set of points. N

points

= 100,000 400,000
Artificial Intelligence PCA Principal components analysis on a matrix. M

size

= 250⇥250 250,000
Artificial Intelligence K

means

Clustering 3-D data points into 10 groups N
points

= 20,000 240,000

4.2 Vivado-HLS Extensions for MapRecude

During the development of HLSMapReduceFlow we faced several limitations
regarding the implementation of the complex Phoenix’s API in Vivado HLS.
To overcome these limitations we have extended the VivadoHLs with the fol-
lowing features:

– Dynamic Memory Management: The Phoenix framework highly uses
malloc/free calls for e↵ective memory operations and reduced run-time
footprint during map and reduce tasks. All DMM functions are not sup-
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ported by Vivado HLS tools. We replace DMM calls with static code allo-
cation on the heap of every application’s code segment. This replacement
a↵ects the BRAM resource utilization, while it also forces the predefined at
compile time variable definition. When the application uses dynamic size
for specific variables, e.g. the length of word that is searched in Word Count
application, then the designer has to set a static maximum variable’s size,
thus decreasing runtime flexibility.

– Pointer Manipulation: The Phoenix framework uses direct memory ad-
dressing, using pointer-based memory access. Also it uses arithmetic oper-
ations, arithmetic re-interpretation, and pointer casting. However, none of
these features is available in Vivado HLS. We had to refactor the code by
eliminating such coding forms.

– Data structures: The Phoenix framework uses a lot of complex data
structures, i.e. structs with array and pointer elements. While scalar point-
ers that point to statically reserved data are normally deployed in Vivado
HLS, the same does not happen with double and beyond pointers, i.e.
pointer-to-pointer. We had to refactor such complex data types to simple
scalar or simple pointer based structures.

– ANCI C synthesizable subset: The Phoenix framework uses many func-
tions of ANCI C that are not synthesizable by Vivado HLS., e.g. limita-
tion of memory copy operations such as memmove, memcpy, etc., string
functions, e.g. strcmp, strlen, strcpy, toupper, etc. and math functions,
e.g. rand, sort, etc.. For all of these functions we developed synthesizable
versions, working on byte/cycle rate. Depending on application character-
istics, we customized these functions to be more e�cient using pipelining
and loop unrolling techniques.

5 Configurable Reduce accelerator

In the original implementation of the MapReduce framework, every core pro-
cesses a specific portion of the input data and whenever it encounter the pre-
defined keys, it emits the key and the value to the Reduce tasks. The Reduce
tasks merge all intermediate values associated with the same intermediate key.
Every time that a key/value pair has to be updated with the new value, the
processor has to load the key and the value from the memory, to process (e.g.
accumulate) the old and the new value and then to store back the key and the
value. Even if the key/value pair is in the cache, this operation takes many
CPU clock cycles. Furthermore, several Reduce threads have to be deployed
across the distributed resources increasing the execution time due to the com-
munication overhead. The proposed Reduce accelerator is used to replace the
Reduce threads (Figure 1) with a single special unit that is used to store and
automatically process (e.g. accumulate)the values of the keys in MapReduce
application. In essence, the Reduce accelerator is used for the e�cient imple-
mentation of the Reduce tasks that merges all intermediate values associated
with the same intermediate key.
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Fig. 5 Block diagram of the MapReduce accelerator

The main advantages of the proposed Reduce accelerator are twofold:
Firstly, it is a separate memory structure that is used only for the key/value
pairs and thus it decreases the possibility of a cache miss if the key/value pairs
were stored in the ordinary cache. Secondly, it merges e�ciently the storing
and the processing of the MapReduce values since there is an accumulator
that can accelerate the addition of the current value with the new value every
time that a processor emits a new value for a key that already exists. There-
fore, it can reduce significantly the number of instructions that are required
to accumulate the value of a key/value pair.

5.1 Memory Architecture

The architecture of the MapReduce scratchpad memory is depicted in Figure
5. Each row of the scratchpad memory stores the key, the tags and the value
for each MapReduce key/value pair. Since the key can be several bytes long,
a hash unit is used to reduce the number of bytes to the maximum size of the
cache.

The hash function can accelerate the indexing of the keys but it may create
collision in case those two di↵erent keys have the same hash value. To address
this problem, cuckoo hashing has been selected for resolving hash collisions.
Cuckoo hashing [6] uses two hash functions instead of only one. When a new
entry is inserted then it is stored in the location of the first hash key. If the
entry is occupied the old entry is moved to its second hash address and the
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Fig. 6 Cuckoo hashing

procedure is repeated until an empty slot is found. This algorithm provides
constant lookup time O(1) (lookup requires just inspection of two locations in
the hash table) while the insert time depends on the cache size O(n). In case
that the procedure enters an infinite loop the hash table is rebuild.

The cuckoo hashing algorithm can be implemented using two tables T1
and T2 for each hash function, each of size r. For each of these elements, a
di↵erent hash function is used, h1 and h2 respectively, to create the addresses
of T1 and T2 (Figure 6. Every element x is stored either in T1 or in T2 using
hash function h1 or h2 respectively (i.e. T1[h1(x)] or T2[h2(x)]. Lookups are
therefore straightforward. For each of the element x that we need to look
we just check the two possible locations in tables T1 and T2 using the hash
functions h1 and h2, respectively.

To insert an element x, we check if T1[h1(x)] is empty. If it is empty, then
we store it in this location. If not, we replace the element y that is already
there in T1[h1(x)] with x. We then check if T2[h2(y)] is empty. If it is empty,
we store it in this location. If not, we replace the element z in T2[h2(y)] with y.
We then try to place z in T1[h1(z)], and so on, until we find an empty location.
According to the original cuckoo hashing paper [6], if an empty location is not
found within a certain number of tries, the suggested solution is to rehash
all of the elements in the table. In the current implementation, whenever the
operation enters in such a loop it stops the operation and return zero to the
function call. The function call then it may initiate a rehashing or it may select
to add the specific key in the software memory structure as in the original code.

Two block RAMs are used to store the entries for the two Tables, T1 and
T2 as it is shown in Figure 5. These block RAMs store the key, the value and
the tags. In the tag field one bit is used to indicate if a specific row is valid or
not. Two hash functions are used based on simple XOR functions that map the
key to an address for the block RAMs. Every time that an access is required
to the block RAMs, the hash tables are used to create the address and then
two comparators are used that indicate if there is a HIT on the block RAMs
(i.e. the key is the same as in key in the RAM and the valid bit is 1). The
system is controlled by the Control unit (depicted in Figure ??). The Control
Unit of the MapReduce scratchpad memory is implemented as a Finite State
Machine (FSM) that executes the cuckoo hashing.
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Table 2 Hash and Array mode configuration

Keys Description Hash units

*:* Map tasks can emit any key Enabled

*:k Map tasks can emit to a fixed number of keys Disabled

5.2 Accessing the keys

In many applications that are based on the MapReduce framework, the number
of keys is deterministic and limited to a certain number. For example, in the
Histogram application, the number of keys is limited and we are only interested
about the final value of each key. Therefore, after the processing of the image,
the processor can gather all of the key/value pairs just by requesting the value
of a certain key.

However, in other applications like the WordCount application that will
be described in the next section, the keys and the number are not known
in advance. Therefore, after the end of the processing, the processors cannot
request for the values of the keys since the keys are not know in advance. In
the software implementation of the MapReduce, this problem is resolved by
keeping a linked list that contains all of the keys. In the case of the software-
hardware implementation using the proposed hardware accelerator, this issue
can be resolved either in the software domain or in the hardware domain. In
the latter case, the processors can keep a linked list of all the keys that have
been emitted to the hardware accelerator. However, this solution requires a
fast indexing of the keys as in the original code which may increase significantly
the total execution time.

To solve this problem a hardware equivalent of the linked list has been
implemented and augmented to the hardware accelerator. The hardware linked
list is actually a FIFO that keeps all of the keys that have been inserted into
the block RAMs (as it is depicted in Figure 5). Every time that a new key/value
pair is added to the block RAMs of the hardware accelerator, the key is added
to the FIFO. If the key is already in the block RAMs then the key does not
have to be inserted in the FIFO. In this way, at the end of the processing the
FIFO hosts all the unique keys stored in the block RAMs.

However, in case that the keys are known in advance, the proposed scheme
can be configured to bypass the hashing units. In that case, the control unit
receives the keys and the keys are directly used as index in the memory blocks.
For example, in the case of the histogram applications, the keys are integer
ranging from 0 to 255. Hence, the keys can be directly used as an index to the
memory blocks (and a constant o↵set can be added to the key for di↵erent
colors; blue; green and red). After the processing of the data, the user can just
read the values for each key directly from the memory units, without the need
of the hash units.
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Table 3 Reduce coprocessor configurations

Function Hashing Processing

Version1 YES Accummulate

Version2 NO Accummulate

Version3 YES Calc. Average

Version4 NO Calc. Average

5.3 Configurable Reduce accelerator

As it was described in the previous section, each application that is based on
the MapReduce framework may have di↵erent requirements for the Reduce
function. In the Wordcount, the Histogram and the Linear Regression appli-
cations, the Reduce function needs to accumulate the values for each key; In
the KMeans application, the Reduce function calculates the average of the
values for each key.

On the other hand, in theWordcount and theKMeans applications the keys
needs to be stored using a hash function while in the case of the Histogram and
the Linear Regression, the keys are used directly as an index in the memory
structures. Therefore, four di↵erent versions of the MapReduce accelerator has
been developed as it is shown in the Table 3. The first and the third version
uses hashes to index the keys, while the second and the forth version uses
directly the keys as an index. The first and the second version just accumulate
the values of each key while the last versions calculate the average value for
each key.

6 Performance evaluation

This section describes the experimental setup we used to evaluate the pro-
posed integrated platfrom for MapReduce acceleration using FPGAs as well
as the respective obtained results. We evaluated the e�ciency of the proposed
HLS MapReduceFlow framework considering a MapReduce accelerator for a
FPGA-based architecture, targeting to emerging application domains, e.g. ar-
tificial intelligence, scientific computing, enterprise computing etc. In this pa-
per, we considered six applications evaluation test-bed of Phoenix MapReduce
framework for shared-memory systems [9]. The performance evaluation covers
a representative set of application that typically use the MapReduce frame-
work. The characterization setup of the employed applications is summarized
in Table 1.

To evaluate our framework in performance and scalability, we build up a
testbed for the HLSMapReduceFlow. Since the main scope of this work is the
acceleration of Map tasks (95% of total execution time in Phoenix), we ex-
plore di↵erent architecture exploiting Map accelerators in the FPGA, while for
the following measurements we have used the developed Reduce co-processor.
Also we do not measure communication overhead for transferring input data
streams to the FPGA. Instead we use the on-board FPGA memory to store
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Table 4 Real-word representative comparison between HLSMapReduceFlow-accelerated
FPGA and commodity workstation.

Framework GNU/Linux 3.18.6 x86-64 HLSMapReduceFlow
Platform AMD 8-core FX-8350 4GHz Virtex7-XC7VX485T 150MHz Ratio
Metrics Time(ms) Power(W) Energy(J) T

p

(ms) T
c

(ms) Power(W) Energy(J) T P E
Histogram 344 41.1 14.1 72.2 4.8 1.84 0.13 0.21 0.04 0.009

Matrix Mul/tion 177 41.3 7.3 208 0.6 1.02 0.21 1.17 0.03 0.029
String Match 206 41.6 8.5 95 4.9 2.33 0.22 0.46 0.06 0.026
Word Count 172 40.8 7.0 84 1.4 1.87 0.16 0.48 0.05 0.023

Linear Reg/sion. 158 41.6 6.6 73 6.4 2.08 0.15 0.46 0.05 0.023
PCA 392 41.9 16.4 964 4.1 1.17 1.13 2.45 0.03 0.070

K
means

435 40.3 17.5 503 3.8 1.03 0.52 1.16 0.03 0.029

Average 269 41.2 11 285 3.7 1.62 0.36 1.06⇥ 0.04⇥ 0.03⇥

input streams. This scheme may not be a complete architecture for datacenters
where new requests are coming constantly. However in this work we study the
performance micro-architecture exploitation by instantiating dataflow-based
Map accelerators in the FPGA, regardless the input source and the way input
data are reaching the Map tasks. However, the communication overhead for
transferring the data in and out of the FPGA could be hided by pipelining the
communication and the computation of the key/ value pairs. In that case, the
next frame of data could be stored while the current frame of data is being
processed by the MapReduce accelerators.

6.1 Area resources

Figure 7 shows the self overall performance-scalability tradeo↵ results for
every employed application, when we use, or not, the HLSMapReduceFlow
framework. Every horizontal axis scales the Map accelerators from single-
instance to the maximal number of accelerators. This number is limited by
the reserved FPGA resources of applications. As shown by the comparison of
the architecture without the MapRecude framework (No-MR), and the 1-Map
accelerator instance, the implementation of HLSMapReduceFlow framework
introduces a cost in both resources and execution time by a factor of 18% and
38% respectively. However, as long as more Map accelerators are instantiated,
the performance in terms of throughput is almost linear boosted. However
some applications reach a saturation point where the instantiation of more
accelerators does not lead to expected speedup. This is the case for String
Match, PCA, Kmeans and Word Count. We found that both the dynamic be-
havior of these applications and data dependency among calculations prevents
Vivado HLS for applying e↵ective dataflow processing optimizations. For in-
stance, the PCA kernel is a streaming application with no dynamism. However
its computations have high data dependencies without equivalent data local-
ity. Thus, the fine-grain splitting of input data to data chunks that include
elements needed by more than one map accelerators, causes performance drop
due to stalled Map processing tasks.
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Fig. 7 Self performance-scalability tradeo↵ of HLSMapReduceFlow framework.

In order to provide a more real-word representative comparison, we evalu-
ated HLSMapReduceFlow against a high-end workstation. The workstation
is powered by the 8-core AMD FX-8350 processor clocked at 4GHz. This
processor has a TDP value of 125 Watts. We compiled the employed ap-
plications using GCC compiler (v4.9.2) and run the applications with glibc
runtime linking, in a GNU/Linux (Kernel 3.18.6) 64-bit OS, enabling many
compiler omptimizations (-O2), including vector processing ones (SSE, AVX
etc.). The derived measurements for execution time, power and energy are
shown in the first three columns of Table 4. The next three columns show the
respective metrics for a system composed of a Virtex-7 FPGA (XC7VX485T)
clocked at 150MHz utilizing the HLSMapReduceFlow framework. The PC-
FPGA communication is established with a PCI Express 3.0 link, o↵ering
maximum bandwidth of 8Gbps. The overall measured time for the FPGA de-
ployment is represented by the time for processing on the FPGA, Tp and the
time for PC-FPGA communication, Tc (downloading data from PC to FPGA
and uploading results from FPGA to PC). In the current design, data are
stored in the block RAMs (BRAMs) embedded in the FPGAs. In order to
hide the communication overhead we could pipeline the I/O transfer with the
computation tasks. For example we could use additional BRAMs to store the
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next stream of data that is going to be processed by the FPGA while comput-
ing the current stream of data. The power values have been derived through
the usage of PowerTop1 utility for the CPU and Xilinx Xpower2 utility for the
FPGA. As shown, the proposed framework delivers extremely performance-
per-watt e�cient solutions, reporting two orders of magnitude less energy for
the same execution timing window. Consequently we show that the proposed
scheme is an elegant candidate implementation infrastructure for data centers
that promises high energy e�ciency for specific types of applications.

In the current configuration, the memory structure of the Reduce acceler-
ator has been configured to host 2K key/value pairs. Each key can be 64-bits
long and the value can be 32-bits long. The total size of the memory structure
is 2K ⇥ 104 bits. The first 64 bits are used to store the key in order to com-
pare if we have a hit or a miss using the hash function. The next 8 bits are
used for tags and the next 32 bits are used to store the value. In the current
configuration the maximum value of key is 64 bits and a hash function is used
to map the key (64 bits) into the address (12 bits).

The main advantage of the implementation in an FPGA is that this scratch-
pad is configurable and it can be tuned based on the application requirements.
The maximum size of each key is 8 bytes in the current configuration. In ap-
plications that the key is larger than 8 bytes for a specific application then the
user can either increase the size of the words or follow a hybrid approach. In
the hybrid approach, keys that are smaller than 9 bytes are stored in the hard-
ware accelerator while keys that are 9 bytes or longer (rare case) are stored in
a software structure. In total, the Reduce co-processor occupies 4184 Look-Up
Tables (LUts) (8% of the overall area) and 29 BRAMs.

7 Conclusions

The performance evaluation of the integrated platform shows that FPGA-
based acceleration of MapReduce applications can be used to significantly
reduce the energy consumption in the data centers. The FPGA-based accel-
eration can provide up to 2 orders of magnitude lower energy consumption
compared to the typical General Purpose Processors (GPPs). The proposed
platform that extends the HLS flow to support the required programming
structures for the Map functions allows the fast and e�cient implementation
of the required Map accelerators. The Reduce accelerator can also be con-
figured to meet the application’s requirements and speedup the processing
of the key/value pairs. Overall, the proposed integrated platform shows how
FPGA-based acceleration could utilized in data centers to reduce the energy
consumption and face the demanding increase of the network tra�c.

1 https://01.org/powertop
2 http://www.xilinx.com/products/design tools/logic design/verification/xpower.htm
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