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Abstract. The threat of hardware Trojans has been widely recognized
by academia, industry, and government agencies. A Trojan can com-
promise security of a system in spite of cryptographic protection. The
damage caused by a Trojan may not be limited to a business or reputa-
tion, but could have a severe impact on public safety, national economy,
or national security. An extremely stealthy way of implementing hard-
ware Trojans has been presented by Becker et al. at CHES’2012. Their
work have shown that it is possible to inject a Trojan in a random num-
ber generator compliant with FIPS 140-2 and NIST SP800-90 standards
by exploiting non-zero aliasing probability of Logic Built-In-Self-Test
(LBIST). In this paper, we present two methods for modifying LBIST to
prevent such an attack. The first method makes test patterns dependent
on a configurable key which is programed into a chip after the manufac-
turing stage. The second method uses a remote test management system
which can execute LBIST using a different set of test patterns at each
test cycle.
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1 Introduction

Hardware is the root of trust of all secure computations and communications.
Semiconductor chips are used in smart phones, cars, medical devices, etc., mak-
ing the world around us more efficient, convenient and sustainable. Any cryp-
tographic protocol, algorithm, or primitive is implemented either directly in
hardware, or in software which is eventually run on hardware. This makes hard-
ware an attractive target for adversaries. Attacks against critical infrastructure
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such as smart power grid, water supply systems, or traffic control may have
catastrophic consequences for our society.

State-of-the-art integrated circuits are typically too complex and expensive
to be designed and manufactured by one company. Instead, typically some com-
panies focus on the design of integrated circuits, while other companies manu-
facture, test, package, personalize, and distribute the chips. Often a single in-
tegrated circuit is created using IP-blocks designed by other companies. With
multiple players involved in the supply chain, there are plenty of opportunities
to implant a hardware Trojan which opens a backdoor into a chip in spite of
cryptographic protection [26]. Malicious modifications can be introduced into a
design, for example, by tampering with a CAD-tool which is used for circuit’s
synthesis. The code of a CAD-tool is usually huge and it undergoes a continuous
development. So, several extra lines which modify the original design to inject
a Trojan may easily get unnoticed in a multi-million line code. Alternatively, a
third-party-made IP-block might contain a backdoor that can be used to steal
secret keys or extract internal chip data. Circuit modifications can also be made
at the manufacturing stage, potentially affecting all chips or just some selected
ones. Today’s chips contain billions of transistors, so it is very difficult to identify
which of them are not a part of the original design. Functional verification is fur-
ther complicated by the fact that manufacturers are typically given a freedom to
add redundant circuitry to a chip in order to increase manufacturing yield [17].

The presence of hardware Trojans can be difficult to prove. For example,
some PCs are claimed to contain malicious circuit modifications that allow a
person who knows the modifications to remotely access a PC without the user’s
knowledge [33]. However, it is still not confirmed if these claims are true or not.
Some processors are suspected to contain backdoors deliberately implanted in
their hardware Random Number Generators (RNGs) that make possible pre-
dicting RNG’s output [16]. Again, it remains a conspiracy-theory story.

We do not know if these stores are true or not. However, we cannot discount a
possibility that such attacks may take place if they are feasible to implement. For
example, as demonstrated in [3], it is possible to reduce the security of a hardware
RNG compliant with FIPS 140-2 and NIST SP800-90 standards from 128 to
32 bits by injecting stuck-at faults at the outputs of selected transistors. This
can be done without disabling the Built-In Self-Test (BIST) logic which checks
RNG’s functionality at each power-up, without failing BIST tests, and without
failing any randomness tests. Stuck-at faults can be injected a very stealthy
way by modifying dopant types in the active region of transistors. Such dopant-
level Trojans do not require adding any extra logic to the original design and
therefore do not change its layout. As a result, the Trojan-injected circuit appears
legitimate at all wiring layers. Even with the advanced imaging methods such as
Scanning Electron Microscopy (SEM) or Focused Ion Beam (FIM), it extremely
difficult to detect changes made to the dopant in a large design implemented
with nanoscale technologies. To detect changes in dopant types, in addition to
all metal layers, the contact layer has to be examined. High-quality imaging of
the contact layer is significantly more costly than imaging of a metal layer [37]. In
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addition, since only the dopants of a few transistors are modified, the change in
the side-channel information is too small to be detected by side-channel analysis.
Typically side-channel analysis can only detect sufficiently large Trojans that are
at most three to four orders of magnitude smaller than the original design [1].
Trojans of a smaller size remain undetected.

The attack presented in [3] exploits the fact that aliasing probability of BIST
is non-zero due to the compaction of circuit’s output responses. Aliasing proba-
bility is the probability that a fault-free circuit is not distinguished from a faulty
one. If an n-bit compactor is used, the aliasing probability of BIST is 1/2n [9]. In
the traditional BIST, the same set of test patterns is applied to a circuit under
test at each test cycle, and therefore the same compacted output response, called
signature, is expected. Therefore, an adversary who knows the set of BIST test
patterns can select suitable values for the Trojan that result in the same signa-
ture as a fault-free circuit signature. Since the aliasing probability is 1/2n, in
order to inject a Trojan which does not trigger BIST, an adversary has to make
2n−1 simulation trials on average. The typical size of a BIST output response
compactor is 32 bits, so the attack is feasible in practice.

In this paper, we present two methods for modifying BIST to prevent such
an attack. The paper is organized as follows. Section 2 reviews related work on
hardware Trojans. Section 3 gives a background on BIST. Section 4 describes
the attack from [3]. Section 5 presents two countermeasures against that attack.
Section 6 concludes the paper and discusses open problems.

2 Background and Related Work

In this section, we give a brief introduction to hardware Trojans, describe pre-
vious approaches for their detection and prevention, and analyze if these ap-
proaches can be used to combat the dopant-level Trojans from [3].

2.1 Definition

A hardware Trojan is a malicious change of a design that makes it possible to by-
pass or disable the security of a system [38]. The purpose of Trojan insertion can
be either to leak confidential information to the adversary, or to disable/destroy
a chip.

Hardware Trojans has been known for a while (also referred to as sleeper
cells [36]), but previously it was very difficult to inject a Trojan into the supply
chain. In today’s globalized world where the manufacturing is outsourced and
the use of third-party IP from small and relatively new vendors is widespread,
this is no longer a problem.

There are two different kinds of Trojans [38]. Functional Trojans add or re-
move transistors, gates or other components to/from the original design. Para-
metric Trojans reduce the reliability of a chip by thinning of wires, weakening of
transistors, or subjecting the chip to radiation. A chip with a parametric Trojan
produces errors or fails every time the affected component is loaded intensely.
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2.2 Detection of Hardware Trojans

Hardware Trojan detection methods can be divided into pre-manufacturing and
post-manufacturing [4].

Pre-manufacturing methods [6,28,29] aim at detecting Trojans inserted into
a HDL description of the design, or an RT- or gate-level netlist during the
design stage. Such malicious modifications can be done, for example, by an un-
trusted employee or an intentionally modified CAD-tool. Post-manufacturing
methods [3, 37] focus at detecting Trojans added during or after the manufac-
turing stage. Such Trojans can be inserted, for example, by an untrustworthy
manufacturer or a third party performing packaging or personalization.

Current techniques for Trojan detection include:

1. Visual inspection in which the layers of a chip are repeatedly removed and
the exposed circuitry is scanned using various high-resolution imaging meth-
ods [7, 35,37];

2. Side-channel analysis in which signals emitted by a chip, e.g. power, path
delays, or electromagnetic radiation are measured [21,22,27,30];

3. Testing (ATPG or BIST), in which test stimuli are applied to a chip and
its output is monitored to detect functional differences from the specifica-
tion [13,14].

Visual inspection To perform a visual inspection, a target chip is first de-
packaged. Then, the layers of the chip are removed one-by-one by polishing or
etching and, for each exposed layer, images are taken with a high-resolution
imaging method such as Scanning Electron Microscopy (SEM) or Focused Ion
Beam (FIM) [35]. These images are then compared to the corresponding images
of a golden chip to detect possible differences. A golden chip is a chip which is
known to have the correct functionality complying with the specification, with-
out any malicious modifications.

Changes in metal wires and transistors can typically be detected with a high
probability. It is more difficult to detect changes made to the dopant, especially
in nanoscale technologies. To detect changes in dopant types, in addition to
all metal layers of a chip, the contact layer has to be examined. Imaging of
a contact layer requires a higher magnification compared to the one of metal
layers. According to [37] high-quality imaging of the contact layer is 16 times
more costly than imaging of a metal layer.

As we can see, visual inspection is expensive and time consuming process.
It also destroys the inspected chip. Therefore, it can only be applied to a small
number of chips. So, although in theory it is possible to detect dopant-level
Trojans from [3] using advanced imaging methods such as SEM or FIM, on
practice it is extremely difficult, especially for large designs implemented with
state-of-the-art technologies.

Side-channel analysis In side-channel analysis, signals emitted by the exam-
ined chip, e.g. power [30], path delays [21,22], or electromagnetic radiation [27],
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are measured and compared to the corresponding signals of a golden chip. Typ-
ically side-channel analysis can only detect Trojans that are at most three to
four orders of magnitude smaller than the original design [1].

The dopant-level Trojans from [3] modify only a small number of transistors
(4 out of the 32) in a small number of flip-flops in a design. The dominant
part of the gates remains unchanged and therefore behaves according to the
specification. As a result, the change is the side-channel information is too small
to be detected by side-channel analysis.

Another technique to detect Trojans, proposed in [31], is to add to a design
redundant Trojan detection circuitry that can decide if the design was modified
during the manufacturing. For example, gates that transform some parts of the
design into ring oscillators can be added. During the analysis, frequencies of
these ring oscillators can be compared to the corresponding frequencies of a
golden chip to detect if the design was changed. A problem with such a method,
as well as with any other method based on extra Trojan detection circuitry, is
that the circuitry itself can be maliciously modified at the manufacturing stage
not to trigger the Trojan.

Testing For a design is using the traditional Design-for-Test (DFT) architecture
with a JTAG port and scan chains, it is possible to access the internal content
after the manufacturing and thoroughly check the functionality using various
external testing methods [5]. Note, however, that test sets are generated for the
original, Trojan-free netlist and typically for a specific fault model (stuck-at,
transition, small-delay defects, etc). Therefore, they may not be able to detect
Trojans as efficiently as they detect manufacturing defects.

For a design without JTAG and scan scan, BIST can used. However, as we
mentioned in Section 1, it is possible to exploit the non-zero aliasing probabil-
ity of BIST and make Trojan modifications so that the Trojan-injected circuit
produces the same expected signature as a fault-free circuit. For this reason, the
dopant-level Trojans from [3] are resistant to the conventional BIST.

2.3 Prevention of Hardware Trojans

Some countermeasures have also been developed to protect against activation of
certain Trojans, or to maintain secure operation in presence of unknown Trojans,
see [2] for an excellent overview.

The former methods typically involve utilizing data guards such as scram-
bling or obfuscation, or hardening the architecture against specific triggers. For
example, control circuitry that makes Trojan activation difficult can be added
between the untrusted IPs [39].

The latter methods are usually implemented by replication, fragmentation
and voting, as in the traditional fault-tolerant design [12]. For example, a part of
hardware design which is not covered by simulation/verification can be covered
with software [19].



6

Such prevention methods typically require the addition of a large amount of
redundancy to the original design. Therefore, they are not suitable for protecting
devices with constrained resources.

3 Conventional Built-In Self-Test

BIST was introduced in the 80’s with the purpose of combating the raising
complexity of external testing [24]. In BIST test generation and response capture
logic are incorporated on-chip. On-chip circuitry usually works at a much higher
frequency than an external tester. So, by embedding the test pattern generator
on chip, test application time can be reduced. By embedding the output response
analyzer on chip, time to compute the circuit response can be reduced as well.

There are different types of BIST. Logic BIST (LBIST), on which we focus in
this paper, is used for testing random digital logic [32]. Memory BIST (MBIST)
is designed for testing memories [34].

Cryptographic modules such as random number generators, block or stream
ciphers, cryptographic hash functions, etc. often employ LBIST to make possible
periodic fault detection of functional circuits during their lifetime. A random
hardware fault can compromise the security of a system. For example, if the
output of a pseudo-random number generator used in a stream cipher gets stuck
to 0, then the stream cipher will be sending messages unencrypted.

The traditional LBIST employs a Pseudo-Random Pattern Generator (PRPG)
to generate pseudo-random test patterns that are applied to the circuit under
test and an output response compactor for obtaining the cumulative value of
the output responses of the circuit to these test patterns, called signature (see
Figure 1) [23]. Faults are detected by comparing the computed signature to the
expected ”good” signature.

Theoretically, it is possible to generate a complete set of test patterns off-line
using some Automatic Test Pattern Generation (ATPG) method [5] and store
this test set in an on-chip Read Only Memory (ROM). However, such a scheme
does not reduce the cost of test pattern generation and requires a very large
ROM. Several gigabits of test data may be required for a multi-million gate
design [18]. Instead, pseudo-random patterns generated by a Linear Feedback
Shift Register (LFSR) are usually used as test patterns [25]. LFSRs are simple,
fast, and easy to implement in hardware [15].

The output response compactor is usually implemented by a Multiple Input
Signature Register (MISR). Since the output response is compacted, a faulty
circuit may produce the same signature as the correct circuit. This is known as
an aliasing error. If an MISR with a primitive generator polynomial is used5,
then the aliasing probability is bounded by 1/2n [9], where n is the size of the
MISR.

LBIST controller contains control circuitry that administrates the LBIST
testing process: generation of pseudo-random test patterns, their application to

5 An irreducible polynomial of degree n is called primitive if the smallest m for which
it divides xm + 1 is equal to 2n − 1 [15].
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Fig. 1. Traditional LBIST.

the circuit under test and compaction of responses of the circuit to these test
patterns. In operation, the controller initializes the PRPG with the initial state
defined by the test initialization parameters. After the initialization, controller
counts the number of test patterns generated by the PRPG and stops the PRPG
when a pre-defined number of patterns is generated.

Pseudo-random patterns generated by the PRPG are applied to the circuit
under test and propagated through its components. The resulting responses are
fed into the MISR. The MISR computes the signature and forwards it to the
decision logic.

Decision logic compares the signature computed by the MISR to the expected
signature and makes a decision whether the circuit under test passed or failed
the test cycle. If the MISR signature matches the expected signature, the circuit
passes the test cycle; otherwise it fails the test.

The test initialization parameters and the expected signature are typically
stored in a memory or hard-wired during the manufacturing stage. LBIST is
usually performed automatically at power-up and restart, or in response to an
external trigger, e.g., if a hardware or software supervising the chip indicates a
fault. In addition, LBIST may be initiated by an operator, e.g., for debugging
purposes when a faulty chip is sent for repair.

4 Attack of a Hardware Random Number Generator

In this section, we describe the attack on a hardware RNG presented in [3].
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The RNG considered in [3] consists of an entropy source and a digital post-
processing unit [20]. The digital post-processing unit contains an Online Health
Test (OHT) module and a cryptographically secure Digital Random Bit Gener-
ator (DRBG). The OHT monitors the random numbers from the entropy source
to guarantee that they have a required minimum entropy. DRBG includes a con-
ditioner and a rate matcher. The conditioner computes new seeds for the rate
matcher. On the based of these seeds, the rate matcher computes 128-bit ran-
dom numbers. This is done by performing an Advanced Encryption Standard [8]
(AES)-based encryption with a 128-bit seed c and a 128-bit encryption key K.

The generated random numbers are tested against a range of statistical tests
in order to be NIST SP800-90 and FIPS 140-2 compliant. In addition, to be
compliant with FIPS 140-2, the RNG contains an LBIST module which checks
the functionality of the RNG at each power-up. When LBIST is initiated, the
entropy source is disconnected and replaced by a 32-bit LFSR which generates
pseudo-random test patterns. The 32-bit MISR compacts the resulting output
responses of the rate matcher into a signature. This signature then is compared
to a hard-wired expected signature to detect faults in the conditioner and the
rate matcher. If two signatures are the same, the RNG passes the LBIST.

In the Trojan-free case, the probability that an adversary successfully guesses
a random number generated by the RBG is 1/2128, i.e. the attack complexity
is 128-bits. It was shown in [3] that this complexity can be reduced to n bits
by fixing to constants all flip-flops that store the key K and all but n flip-
flops that store the seed c. As a result of these modifications, a 128-bit random
number generated by the rate matcher depends on n random bits and 256 − n
constant bits known to the adversary. Therefore, the adversary can predict 128-
bit random numbers with the probability of success 1/2n. On the other hand,
if n is sufficiently large, the Trojan RNG will still pass all the statistical tests,
because by the output generated by the AES generates has very good statistical
properties, even if its inputs differ in a few bits only. It was shown in [3] that
the Trojan-injected RNG passed all randomness tests for the case of n = 32.

In order to pass LBIST check as well, the adversary has to find constant
values for the 128 bits of the key K and the 128 − n bits of the seed c which
produce the same signature as a fault-free circuit. This can be done by simulating
the circuit with different stack-at faults injected into the flip-flops that store K
and c. If n = 32, then the adversary needs to do 231 simulation trials on average
to succeed. In Section 5.1, we show an example of such an attack.

To summarize, the attack presented in [3] has shown that non-zero aliasing
probability of LBIST can be advantageously exploited to inject hardware Trojans
in an RNG which is compliant with FIPS 140-2 and NIST SP800-90 standards.
In the next section, we show how LBIST can be modified to prevent such attacks.

5 Proposed Countermeasures Against Trojans

In this section, we present two countermeasures against the hardware Trojans
exploiting non-zero aliasing probability of LBIST. Both countermeasures are
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Fig. 2. The presented keyed LBIST.

based on the observation that, in order to prevent such attacks, it is sufficient
to make the LBIST test patterns unknown until the manufacturing stage is
completed.

5.1 Keyed LBIST

One possibility to mitigate the dopant-level Trojans presented in [3] is to make
the initial state of the PRPG dependant on a configurable key, as shown in
Figure 2. The PRPG needs to be adapted to generate test patterns based on an
initialization value which is derived from the key.

To eliminate the possibility that the key is leaked to the manufacturer by
an untrusted employee, the key should be decided and programmed into the
chip after the manufacturing stage. Once the key is decided, the expected MISR
signature can be computed by simulation and programmed into the chip as well.
The programming of the key and the signature can be done either by the user
or by trusted third party which performs chip personalization.

The key and the signature can be stored into an on-chip non-volatile mem-
ory, such as Flash or Electrically Erasable Programmable Read-Only Memory
(EEPROM), or by means of programmable fuses. Almost all modern non-trivial
integrated circuits contain a fusebox which is used e.g. for repair of on-chip mem-
ories at power-up or for storing secret keys. Even if a chip does not contain a
JTAG port, a fusebox or an on-chip non-volatile memory can be accessed for
programming ”from inside” by a dedicated on-chip software. The software is
typically controlled by a PC connected to a board on which the chip is mounted
though a board connector.



10

3 2 1 0

Fig. 3. 4-bit NLFSR from the example.

Test Fault-free case With fault injected
pattern NLFSR MISR NLFSR MISR

from LFSR response signature response signature
(x3x2x1x0) (x3x2x1x0) (x3x2x1x0) (x3x2x1x0) (x3x2x1x0)

1011 0011 0011 0001 0001
1010 1101 0101 1101 0100
0101 1010 0001 1000 1010
1101 1110 0111 1100 1001
1001 1100 0110 1100 0001
1011 0011 0000 0001 1000
1010 1101 1101 1101 1001
0101 1010 0101 0001 0101

Table 1. Example of a hardware Trojan not detected by LBIST.

Note that the key does not have to be kept secret after the chip has been
fabricated. If the currently stored key and the signature become compromised,
e.g., an adversary gains knowledge of them when the chip is sent for repair or
maintenance, a new key and a new signature can be programmed by the user
upon receiving the chip back. By re-programming the signature, we will also be
able to detect counterfeit in the case the original chip has been replaced during
repair or maintenance.

As an example, consider an RNG implemented by a 4-stage Non-Linear Feed-
back Shift Register (NLFSR) shown in Figure 3. This NLFSR generates pseudo-
random numbers in the range {1, 2, . . . , 15}. The sequence of generated numbers
is defined by the following feedback functions:

f0(x1) = x1

f1(x0, x1, x2) = x2 ⊕ x0x1

f2(x0, x1, x3) = x3 ⊕ x0x1

f3(x0, x1) = x0 ⊕ x1.

where xi represents for the state variable of the ith stage of the NLFSR, i ∈
{0, 1, 2, 3}, fi is the feedback function of the ith stage and ”⊕” is the XOR.
At each clock cycle, the next state of the NLFSR is computed from its current
state by simultaneously updating the value of each stage i to the value of the
corresponding feedback function fi [11].
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Suppose that the LBIST which is used to test such an RNG uses a 4-bit
LFSR with the connection polynomial 1 ⊕ x ⊕ x2 ⊕ x3 ⊕ x4 as a PRNG and a
4-bit MISR with the connection polynomial 1⊕x3⊕x4 as an output compactor.
We assume that, at each clock cycle, the current 4-bit state vector of the LFSR
is used as a test pattern. The LFSR is initialized to some non-zero state and the
MISR is initialized to (0000). Both, LFSR and MISR are implemented in the
Galois configuration.

The probability that an attacker successfully guesses the number generated
by an n-bit NLFSR is 1/2n. However, by setting k internal flip-flops of the
NLFSR to a constant value it is possible to reduce the complexity of the attack
to 1/2n−k.

Suppose that the attacker knows that the initial state of the LFSR is (1011)
and that 8 test patterns are applied to compute the MISR signature. Then, the
attacker can calculate the expected MISR signature by simulation. From the
3rd column of Table 1 we can see that this signature is (0101). The attacker can
search which of the NLFSR’s flip-flops should be fixed to constant-0 or constant-
1 value in order to get the same signature. In our example, the signature (0101)
can be obtained by fixing the flip-flop corresponding to the stage 1 of the NLFSR
to 0 (see the last column of Table 1). So, the attacker can inject such a fault and
reduce the complexity of the attack by one half.

The presented method mitigates this problem because it makes the expected
signature unknown before the circuit is manufactured. Therefore, an adversary
who wants to inject a Trojan at the manufacturing stage does not know how to
modify the circuit to get the same signature as the fault-free circuit signature.

5.2 Remotely Managed LBIST

Another way to mitigate the dopant-level Trojans from [3] is to modify LBIST
so that it uses a different set of test patterns at each test cycle. We propose to
implement it by using a centralized remote test management system which mon-
itors all end-point devices in the same network, as shown in Figure 4. The test
management system is expected to have sufficient storage and/or computational
resources to either pre-compute and store the expected signatures for a given set
of test initialization parameters, or to compute them on-the-fly by simulation.
The use of test management system allows us to remove some of the LBIST
functionality (test initialization parameters, expected signatures, and decision
logic) from devices under test. It also does not require the addition of keys, as in
the previous countermeasure. However, the price we pay is extra communication
load. Depending on the application requirements, the former might be preferable
to the latter, or vice versa.

The remote test management system contains a test scheduling program,
test initialization parameters, expected signatures, decision logic and network
interface. Upon deciding to initiate a test cycle for all or some devices, the test
scheduling program instructs the test initialization parameters module which
parameters to send. These parameters are transmitted through the network in-
terface and the communication network to the selected end-point devices.
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Fig. 4. Remote test management

The end-point devices contain a remotely managed LBIST module whose
diagram is shown in Figure 5. We assume that the board implementing a device
contains a communication module, e.g. a modem, which performs the commu-
nication between the device and the remote test management system, an CPU
which runs processes related to the communication, and Basic Input/Output
System (BIOS) which provides the functionality and interface for communica-
tion during LBIST.

Then the test initialization parameters are received by the devices, the LBIST
test cycle proceeds as normally and the signature is computed. This signature is
returned to the remote test management system for the analysis on passing/not
passing the test.

The test management system takes ”human-like” decisions regarding which
devices to test, when, and how. These decisions can be taken based on the infor-
mation received by monitoring global external factors such as environment, the
interaction between devices, abnormal responses, etc. For example, meteorolog-
ical sensors that register the wind in various locations within a given area may
be tested immediately after harsh weather conditions, e.g a thunderstorm. As
another example, a device may request the management system to test another
device if several attempts to communicate with it failed. In both examples, faults
might be detected earlier, implying higher availability and safety. The idea of
context-aware automation and decision optimization is not new [10], but to our
best knowledge it has not been applied to LBIST before.
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Note that, by executing LBIST using a different set of test patterns at each
cycle, the presented method is able not only to detect unanticipated random and
malicious faults, but also to cover different subsets of faults. Therefore, it has a
potential to provide a higher fault coverage compared to the traditional LBIST.
This is important for applications requiring high reliability.

In the scenario we described above, the remote test management system
sends to a device the test initialization parameters and the device replies with
a signature. Another scenario is possible, in which the remote test management
system sends to a device both, the test initialization parameters and the ex-
pected signature. Then, the device computes the signature, compares it to the
received expected signature and replies with pass/not passed. While such a case
would involve the same volume of data transferred, it might be preferable for
applications in which the downlink bitrate of the receiving device is higher than
its uplink bitrate.

6 Conclusion

We introduced two countermeasures against the hardware Trojans exploiting
non-zero aliasing probability of LBIST. Both countermeasures are based on the
observation that, in order to prevent such attacks, it is sufficient to make the
test patterns unknown until the manufacturing stage is completed. The first
countermeasure uses a configurable key which is decided and programed into
a chip after its manufacturing. The test patterns are made dependent on the
key. The second countermeasure transfers some of the LBIST functionality from
the device under test to a remote test management system which has sufficient
computational resources to execute LBIST using a different set of test patterns at
each test cycle. Depending on the application requirements, the former approach
might be preferable to the latter, or vice versa.

There is no ”silver bullet” method that can protect against all possible types
of hardware Trojans or other adversarial attacks. In parallel with new counter-
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measures, more complex attacks are being developed. Moreover, we are dealing
with a two-ended stick - a method originally designed as a countermeasure can be
later turned into an attack, and vice versa. For example, advanced visual inspec-
tion methods for Trojan detection can be used by IP thefts to reverse-engineer
chips. Similarly, if side-channel analysis techniques for detecting Trojans that
affect only a tiny fraction of a design are invented, they are likely to give rise to
more effective side-channel attacks.

Future work remains investigating if there are attacks which can go around
the presented countermeasures and what can be done to avoid them.
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