Skip to main content

Advertisement

Log in

Optimal Datapath Widths Within Turbo and Viterbi Decoders for High Area- and Energy-Efficiency

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Datapath widths in state-of-the-art Turbo and Viterbi decoder implementations depend on estimated upper bounds of the differences of processed metrics. Aiming at highest area and energy efficiency, this paper presents guidelines for designing Turbo and Viterbi decoder datapaths with minimal widths. This is based on maximum absolute values of branch, state and path metric differences within theMax-Log-MAP respectively Viterbi decoding algorithm applying modulo normalization. The proposed methodology for determining the maximum absolute values covers punctured as well as n-input binary convolutional and Turbo codes so it accommodates higherradix add-compare-select operations. Maximum absolute values of metric differences and minimum datapath widths are presented for the 3GPP-LTE, DVB-RCS2 and IEEE-802.16 (WiMAX) compliant Turbo decoders and for the IEEE-802.11 (Wi-Fi), IEEE-802.16 (WiMAX) and 3GPP-LTE compliant Viterbi decoders. Besides, a new dynamic branch-metric saturation scheme is presented, which enables a further datapath width reduction within Turbo decoders. In total, a datapath width reduction of two bits (−20 %) is achieved applying radix-4 Max-Log-MAP arithmetic. An overall area-time-energy complexity reduction of 31% is achieved for a soft-input soft-output decoder and of 24% for the LTE Turbo decoder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23

Similar content being viewed by others

References

  1. Berrou, C., et al. (1993). Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes (1). IEEE International Conference on Communications, 2, 1064–1070.

    Article  Google Scholar 

  2. Hagenauer, J., et al. (1996). Iterative Decoding of Binary Block and Convolutional Codes. IEEE Transactions on Information Theory, 42(2), 429–445.

    Article  MathSciNet  MATH  Google Scholar 

  3. Viterbi, A.J. (1967). Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm. IEEE Transactions on Information Theory, 13(2), 260–269.

    Article  MATH  Google Scholar 

  4. Hagenauer, J., & Hoeher, P. (1989). A Viterbi Algorithm with Soft-decision Outputs and its Applications. IEEE Global Telecommunications Conference and Exhibition (GLOBECOM), 3, 1680–1686.

    Google Scholar 

  5. Bahl, L.R., et al. (1974). Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate. IEEE Transactions on Information Theory, 284–287.

  6. Hekstra, A.P. (1989). An Alternative to Metric Rescaling in Viterbi Decoders. IEEE Transactions on Communications, 37(11), 1220–1222.

    Article  MathSciNet  Google Scholar 

  7. Siegel, P.H., et al. (1991). Exact Bounds for Viterbi Detector Path Metric Differences. IEEE International Conference on Acoustics, Speech and Signal Processing, 1093–1096.

  8. Worm, A. (2001). Implementation Issues of Turbo-Decoders, Ph.D. Dissertation. Kaiserslautern: Universität Kaiserslautern.

    Google Scholar 

  9. Wu, Y., et al. (2001). Data width Requirements in SISO Decoding with Modulo normalization. IEEE Transactions on Communications, 49(11), 1861–1868.

    Article  MATH  Google Scholar 

  10. Onyszchuk, I.M., et al. (1993). Quantization Loss in Convolutional Decoding. IEEE Transactions on Communications, 41(2), 261–265.

    Article  MATH  Google Scholar 

  11. Boutillon, E., et al. (2003). VLSI Architectures for the MAP Algorithm. IEEE Transactions on Communications, 51(2), 175–185.

    Article  Google Scholar 

  12. Yan, Z., et al. (2016). High Performance Parallel Turbo Decoder with Configurable Interleaving Network for LTE Application. Integration VLSI Journal, 52, 77–90.

    Article  Google Scholar 

  13. Wang, G., et al. (2014). Parallel Interleaver Design for a high Throughput HSPA /LTE Multi-standard Turbo Decoder. IEEE Transactions on Circuits and Systems, 61(5), 1376–1389.

    Article  Google Scholar 

  14. Murugappa, P., et al. (2013). Parameterized Area-efficient Multi-standard Turbo Decoder. Proc. Design, Automation and Test in Europe, 109–114.

  15. Studer, C., et al. (2012). Implementation Trade-offs of Soft-input Soft-output MAP Decoders for Convolutional Codes. IEEE Transactions on Circuits and Systems, 59(11), 2774–2783.

    Article  MathSciNet  Google Scholar 

  16. Ilnseher, T., et al. (2012). A 2.15 GBit/s Turbo Code Decoder for LTE Advanced Base Station Applications, 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC), pp 21–25.

  17. Studer, C., et al. (2011). Design and Implementation of a Parallel turbo-decoder ASIC for 3GPP-LTE. IEEE Journal of Solid-State Circuits, 46(1), 8–17.

    Article  Google Scholar 

  18. Ilnseher, T., et al. (2010). A Multi-mode 3GPP-LTE/HSDPA Turbo Decoder. IEEE International Conference on Communication Systems, 336–340.

  19. May, M., et al. (2010). A 150Mbit/s 3GPP LTE Turbo Code Decoder. Proc. IEEE Conference Design, Automation and Test in Europe (DATE), 1420–1425.

  20. Broich, M., & Noll, T.G. (2014). Optimal Data path Widths for Energy- and Area-efficient Max-Log-MAP Based LTE Turbo Decoders. International Symposium on System on Chip, 1–8.

  21. Martina, M., & Masera, G. (2011). State Metric Compression Techniques for Turbo Decoder Architectures. IEEE Transactions on Circuits and Systems, 58(5), 1119–1128.

    Article  MathSciNet  Google Scholar 

  22. Yang, Q., et al. (2013). Low Complexity State Metric Compression technique in turbo decoder. IEICE Electronics Express, 10(15), 1–7.

    Article  Google Scholar 

  23. Lee, Y., et al. (2015). Memory-reduced Turbo Decoding Architecture using NII Metric Compression.

  24. 3GPP and ETSI (2015). LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding: 3GPP TS 36.212 version 12.4.0 Release 12.

  25. Robertson, P., et al. (1995). A Comparison of Optimal and Sub-optimal MAP Decoding Algorithms Operating in the Log Domain. IEEE International Conference on Communications, 2, 1009–1013.

    Article  Google Scholar 

  26. Vogt, J., & Finger, A. (2000). Improving the Max-Log-MAP Turbo Decoder. Electronics Letters, 36(23), 1937–1939.

    Article  Google Scholar 

  27. Worm, A., et al. (2000). Advanced Implementation Issues of Turbo-decoders, Proc. 2nd International Symposium on Turbo Codes & Related Topics, pp 351–354.

  28. Shung, C.B., et al. (1990). VLSI Architectures for Metric normalization in the Viterbi Algorithm. IEEE International Conference on Communications, 1723–1728.

  29. Wu, Y., & Woerner, B.D. (2000). Internal Data width in SISO Decoding Module with Modular renormalization. IEEE 51st Vehicular Technology Conference, 675–679.

  30. Viterbi, A.J. (1971). Convolutional Codes and Their Performance in Communication Systems. IEEE Transactions on Communications Technology, 19(5), 751–772.

    Article  MathSciNet  Google Scholar 

  31. LAN/MAN Standards Committee of the IEEE Computer Society (2012). Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: IEEE Std 802.11–2012.

  32. LAN/MAN Standards Committee of the IEEE Computer Society (2012). IEEE Standard for Air Interface for Broadband Wireless Access Systems: IEEE Std 802.16–2012.

  33. ETSI (2014). Digital Video Broadcasting (DVB); Second Generation DVB Interactive Satellite System (DVB-RCS2); Part 2: Lower Layers for Satellite standard: EN 301 545-2 version 1.2.1.

  34. Wu, D., et al. (2009). Implementation of a High-Speed Parallel Turbo Decoder for 3GPP LTE Terminals. IEEE 8th International Conference on ASIC, 481–484.

  35. Broich, M., & Noll, T.G. (2012). Efficient VLSI Architectures of QPP Interleavers for LTE Turbo Decoders. International Symposium on System on Chip, 1–6.

  36. Shrestha, R., & Paily, R.P. (2014). High-throughput Turbo Decoder with Parallel Architecture for LTE Wireless Communication Standards. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(9), 2699–2710.

    Article  Google Scholar 

  37. Roth, C., et al. (2014). Efficient Parallel Turbo-decoding for High-throughput Wireless Systems. IEEE Transactions on Circuits and Systems, 61(6), 1824–1835.

    Article  Google Scholar 

  38. Lin, C.-H., et al. (2013). Reconfigurable Parallel Turbo Decoder Design for Multiple High-Mobility 4G Systems. Journal of Signal Processing Systems, 73(2), 109–122.

    Article  Google Scholar 

  39. Chen, X., et al. (2013). A 691 Mbps 1.392mm2 Configurable Radix-16 Turbo Decoder ASIC for 3GPP-LTE and WiMAX Systems in 65nm CMOS. IEEE Asian Solid-State Circuits Conference, 157–160.

  40. Al-Khayat, R., et al. (2012). Architecture Efficiency of Application-Specific Processors: a 170Mbit/s O.644mm2 Multi-standard Turbo Decoder, International Symposium on System on Chip, 1–7.

  41. Asghar, R., et al. (2012). Implementation of a Radix-4, Parallel Turbo Decoder and Enabling the Multi-Standard Support. Journal of Signal Processing Systems, 66(1), 25–41.

    Article  Google Scholar 

  42. Lin, C.-H., et al. (2011). Area-Efficient Scalable MAP Processor Design for High-Throughput Multistandard Convolutional Turbo Decoding. IEEE Transactions on VLSI Systems, 19(2), 305– 318.

    Article  Google Scholar 

  43. Sun, Y., & Cavallaro, J.R. (2011). Efficient Hardware Implementation of a Highly-Parallel 3GPP LTE/LTE-advance Turbo Decoder. Integration VLSI Journal, 44, 305–315.

    Article  Google Scholar 

  44. Cheng, C.-C., et al. (2010). A 0.077 to 0.168 nJ/bit/iteration Scalable 3GPP LTE Turbo Decoder with an Adaptive Sub-Block Parallel Scheme and an Embedded DVFS Engine. IEEE Custom Integrated Circuits Conference, 1–4.

  45. Wong, C.-C., & Chang, H.-C. (2010). Reconfigurable Turbo Decoder With Parallel Architecture for 3GPP LTE System. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(7), 566–570.

    Article  Google Scholar 

  46. Kim, J.-H., & Park, I.-C. (2009). A Unified Parallel Radix-4 Turbo Decoder for Mobile WiMAX and 3GPP-LTE. IEEE 2009 Custom Integrated Circuits Conference, 487–490.

  47. Wong, C.-C., & Chang, H.-C. (2011). High-Efficiency Processing Schedule for Parallel Turbo Decoders Using QPP Interleaver. IEEE Transactions on Circuits and Systems, 58(6), 1412– 1420.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Broich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broich, M., Noll, T.G. Optimal Datapath Widths Within Turbo and Viterbi Decoders for High Area- and Energy-Efficiency. J Sign Process Syst 87, 299–325 (2017). https://doi.org/10.1007/s11265-016-1140-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-016-1140-7

Keywords

Navigation