Skip to main content

Advertisement

Log in

Super-Resolution via Sparse Representation for Low-dose X-ray Photography

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

The diagnostic medical imaging has provided enormous benefits in the early detection as well as the potential side effect of radiation induced genetic diseases. The super-resolution analysis is proved to be a critical way to maintain the reduction of the radiation dose and the imaging quality. Due to compressive sensing wide research, sparse representation was well applied in super-resolution. It has been widely acknowledged that learning-based super-resolution (SR) methods are effective to generate a high-resolution (HR) image from a single low-resolution (LR) input. This paper presents a new approach to single-image super resolution in the X-Ray photography field: 1) A novel dictionary learning method for enhancing the similarity of the sparse representations between the LR and the HR block pairs through simultaneous training two dictionaries using the theory of PCA is proposed. 2) For each given input LR patch, to find the most proper sub-dictionary in the low-resolution dictionary. 3) Get the corresponding high-resolution sub-dictionary and to solve the ill-posed super-resolution problem by the iterative algorithm and to generate the HR blocks. Comprehensive evaluations are implemented to demonstrate that the proposed methods can definitely improve the performance of the reconstruction in our selected cases. However, there is no proof that this is true for all kinds of structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Acciavatti, R.J., & Maidment, A.D. (2012). Observation of super-resolution in digital breast tomosynthesis. Medical Physics, 39(12), 7518–7539. doi:10.1118/1.4757583.

    Article  Google Scholar 

  2. Aharon, M., Elad, M., & Bruckstein, A. (2006). K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions ON Signal Processing, 54 (11), 4311. doi:10.1109/TSP.2006.881199.

    Article  Google Scholar 

  3. Chang, G., Pan, T., Clark Jr, J.W., & Mawlawi, O.R. (2008). Optimization of super-resolution processing using incomplete image sets in pet imaging. Medical Physics, 35(12), 5748–5757. doi:10.1118/1.3021117.

    Article  Google Scholar 

  4. Chang, H., Yeung, D.Y., & Xiong, Y. (2004). Super-resolution through neighbor embedding. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 1–8. doi:10.1109/CVPR.2004.1315043.

  5. Chantas, G.K., Galatsanos, N.P., & Woods, N.A. (2007). Super-resolution based on fast registration and maximum a posteriori reconstruction. IEEE Transactions on Image Processing, 16 (7), 1821–1830. doi:10.1109/TIP.2007.896664.

    Article  MathSciNet  Google Scholar 

  6. Dong, W., Zhang, D., Shi, G., & Wu, X. (2011). Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing, 20(7), 1838–1857. doi:10.1109/TIP.2011.2108306.

    Article  MathSciNet  Google Scholar 

  7. Freeman, W.T., Jones, T.R., & Pasztor, E.C. (2002). Example-based super-resolution. IEEE Computer Graphics and Applications, 22(2), 56–65. doi:10.1109/38.988747.

    Article  Google Scholar 

  8. Freeman, W.T., Pasztor, E.C., & Carmichael, O.T. (2000). Learning low-level vision. International Journal of Computer Vision, 40(1), 25–47. doi:10.1023/A:1026501619075.

    Article  MATH  Google Scholar 

  9. Gevrekci, M., Gunturk, B.K., & Altunbasak, Y. (2007). Pocs-based restoration of bayer-sampled image sequences. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 1, pp. 753–756. doi:10.1109/ICASSP.2007.366017.

  10. de González, A.B., & Darby, S. (2004). Risk of cancer from diagnostic x-rays: estimates for the uk and 14 other countries. The Lancet, 363(9406), 345–351. doi:10.1016/S0140-6736(04)15433-0.

    Article  Google Scholar 

  11. Hsieh, J. (1998). Adaptive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise. Medical Physics, 25(11), 2139–2147. doi:10.1118/1.598410.

    Article  Google Scholar 

  12. Li, X., & Orchard, M.T. (2001). New edge-directed interpolation. IEEE Transactions on Image Processing, 10(10), 1521–1527. doi:10.1109/83.951537.

    Article  Google Scholar 

  13. Momose, A., Takeda, T., Itai, Y., & Hirano, K. (1996). Phase-contrast x-ray computed tomography for observing biological soft tissues. Nature Medicine, 2, 473–475. doi:10.1038/nm0496-473.

    Article  Google Scholar 

  14. Scherrer, B., Gholipour, A., & Warfield, S.K. (2012). Super-resolution reconstruction of diffusion-weighted images from distortion compensated orthogonal anisotropic acquisitions. In Mathematical Methods in Biomedical Image Analysis (MMBIA), 2012 IEEE Workshop on, pp. 249–254. doi:10.1109/MMBIA.2012.6164759.

  15. Trinh, D.H., Luong, M., Dibos, F., Rocchisani, J., Pham, C., & Nguyen, T.Q. (2014). Novel example-based method for super-resolution and denoising of medical images. IEEE Transactions on Image Processing, 23(4), 1882–1895. doi:10.1109/TIP.2014.2308422.

    Article  MathSciNet  Google Scholar 

  16. Tropp, J.A., & Wright, S.J. (2010). Computational methods for sparse solution of linear inverse problems. Proceedings of the IEEE, 98(6), 948–958. doi:10.1109/JPROC.2010.2044010.

    Article  Google Scholar 

  17. Wall, B., & Hart, D. (1997). Revised radiation doses for typical x-ray examinations. report on a recent review of doses to patients from medical x-ray examinations in the uk by nrpb. national radiological protection board. The British Journal of Radiology, 70(833), 437–439. doi:10.1259/bjr.70.833.9227222.

    Article  Google Scholar 

  18. Wang, Y.H., Qiao, J., Li, J.B., Fu, P., Chu, S.C., & Roddick, J.F. (2014). Sparse representation-based mri super-resolution reconstruction. Measurement, 47, 946–953. doi:10.1016/j.measurement.2013.10.026.

    Article  Google Scholar 

  19. Xu, Q., Yu, H., Mou, X., Zhang, L., Hsieh, J., & Wang, G. (2012). Low-dose x-ray ct reconstruction via dictionary learning. IEEE Transactions on Medical Imaging, 31(9), 1682–1697. doi:10.1109/TMI.2012.2195669.

    Article  Google Scholar 

  20. Yang, J., Wang, Z., Lin, Z., Cohen, S., & Huang, T. (2012). Coupled dictionary training for image super-resolution. IEEE Transactions on Image Processing, 21(8), 3467–3478. doi:10.1109/TIP.2012.2192127.

    Article  MathSciNet  Google Scholar 

  21. Yang, J., Wright, J., Huang, T.S., & Ma, Y. (2010). Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 19(11), 2861–2873. doi:10.1109/TIP.2010.2050625.

    Article  MathSciNet  Google Scholar 

  22. Yin, W., Osher, S., Goldfarb, D., & Darbon, J. (2008). Bregman iterative algorithms for ∖ell_1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences, 1 (1), 143–168. doi:10.1137/070703983.

    Article  MathSciNet  MATH  Google Scholar 

  23. Yu, S., Zhang, R., Wu, S., Hu, J., Xie, Y., & et al. (2013). An edge-directed interpolation method for fetal spine mr images. Biomedical Engineering Online, 12(1), 102. doi:10.1186/1475-925X-12-102.

    Article  Google Scholar 

  24. Yuan, Q., Zhang, L., & Shen, H. (2013). Regional spatially adaptive total variation super-resolution with spatial information filtering and clustering. IEEE Transactions on Image Processing, 22(6), 2327–2342. doi:10.1109/TIP.2013.2251648.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Zhang L, Dr Li X, and Dr. Yang J for their sharing codes. The study was supported by the National Natural Science Foundation of China (NSFC:61201179, 81300664).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Hou, C., Zhou, Y. et al. Super-Resolution via Sparse Representation for Low-dose X-ray Photography. J Sign Process Syst 88, 287–295 (2017). https://doi.org/10.1007/s11265-016-1163-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-016-1163-0

Keywords

Navigation