Skip to main content
Log in

GPU-Based Iterative Medical CT Image Reconstructions

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

The algebraic reconstruction technique (ART) is an iterative algorithm for CT (i.e., computed tomography) image reconstruction that delivers better image quality with less radiation dosage than the industry-standard filtered back projection (FBP). However, the high computational cost of ART requires researchers to turn to high-performance computing to accelerate the algorithm. Alas, existing approaches for ART suffer from inefficient design of compressed data structures and computational kernels on GPUs. Thus, this paper presents our CUDA-based CT image reconstruction tool based on the algebraic reconstruction technique (ART) or cuART. It delivers a compression and parallelization solution for ART-based image reconstruction on GPUs. We address the under-performing, but popular, GPU libraries, e.g., cuSPARSE, BRC, and CSR5, on the ART algorithm and propose a symmetry-based CSR format (SCSR) to further compress the CSR data structure and optimize data access for both SpMV and SpMV_T via a column-indices permutation. We also propose sorting-based global-level and sorting-free view-level blocking techniques to optimize the kernel computation by leveraging different sparsity patterns of the system matrix. The end result is that cuART can reduce the memory footprint significantly and enable practical CT datasets to fit into a single GPU. The experimental results on a NVIDIA Tesla K80 GPU illustrate that our approach can achieve up to 6.8x, 7.2x, and 5.4x speedups over counterparts that use cuSPARSE, BRC, and CSR5, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Notes

  1. The sorting-based global-level blocking is easy to be implemented, while the sorting-free view-level blocking delivers faster preprocessing time and less data padding and can also enable the adapted algorithm to converge faster.

  2. This kernel leverages the merits of our SCSR format and blocking techniques to provide significant performance improvements.

References

  1. IMV Medical Information Division. (2007). IMV 2006 CT Market Summary Report Table of Contents.

  2. Gordon, R., Bender, R., Herman, G. (1970). Algebraic reconstruction techniques (art) for three-dimensional electron microscopy and x-ray photography. Journal of Theoretical Biology, 29(3), 471–481.

    Article  Google Scholar 

  3. Guan, H., & Gordon, R. (2005). A projection access order for speedy convergence of art (algebraic reconstruction technique): A multilevel scheme for computed tomography. Physics in Medicine and Biology, 39(11), 1994.

    Google Scholar 

  4. Mueller, K., Yagel, R., Cornhill, J.F. (1997). The weighted-distance scheme: a globally optimizing projection ordering method for art. IEEE Transactions on Medical Imaging, 16(2), 223–230.

    Article  Google Scholar 

  5. Zhang, S., Zhang, D., Gong, H., Ghasemalizadeh, O., Wang, G., Cao, G. (2014). Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique. Optical Engineering, 53(11), 113101:1–113101:9.

    Google Scholar 

  6. Laurent, C., Peyrin, F., Chassery, J.-M., Amiel, M. (1998). Parallel image reconstruction on mimd computers for three-dimensional cone-beam tomography. Parallel Computing, 24(9), 1461–1479.

    Article  Google Scholar 

  7. Melvin, C. (2006). Design, Development and Implementation of a Parallel Algorithm for Computed Tomography Using Algebraic Reconstruction Technique. Canadian theses. University of Manitoba (Canada).

  8. Grüll, F., Kunz, M., Hausmann, M., Kebschull, U. (2012). An implementation of 3d electron tomography on fpgas. In 2012 International Conference on Reconfigurable Computing and FPGAs (ReConFig) (pp. 1–5).

  9. Pang, W.-M., Qin, J., Lu, Y., Xie, Y., Chui, C.-K., Heng, P.-A. (2011). Accelerating simultaneous algebraic reconstruction technique with motion compensation using cuda-enabled gpu. International Journal of Computer-Assisted Radiology and Surgery, 6(2), 187–199.

    Article  Google Scholar 

  10. Zhao, X., Hu, J.-J., Yang, T. (2013). Gpu-based iterative cone-beam ct reconstruction using empty space skipping. Journal of X-ray Science and Technology, 21(1), 53–69.

    Google Scholar 

  11. Liu, R., Luo, Y., Yu, H. (2014). Gpu-based acceleration for interior tomography. IEEE Access, 2, 757–770.

    Article  Google Scholar 

  12. Guo, M., & Gao, H. (2017). Memory-efficient algorithm for stored projection and backprojection matrix in helical ct. Medical Physics, 44(4), 1287–1300.

    Article  Google Scholar 

  13. Ashari, A., Sedaghati, N., Eisenlohr, J., Sadayappan, P. (2014). An efficient two-dimensional blocking strategy for sparse matrix-vector multiplication on gpus. In 28th ACM Int’l Conf. on Supercomputing (pp. 273–282).

  14. Buluç, A., Fineman, J., Frigo, M., Gilbert, J., Leiserson, C. (2009). Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks. In 21st ACM Symposium on Parallelism in Algorithms and Architectures (pp. 233–244).

  15. Liu, W., & Vinter, B. (2015). Csr5: An efficient storage format for cross-platform sparse matrix-vector multiplication. In 29th ACM Int’l Conf. on Supercomputing, ICS ’15 (pp. 339–350).

  16. Yu, X., Wang, H., Feng, W.-C., Gong, H., Cao, G. (2016). cuart: Fine-grained algebraic reconstruction technique for computed tomography images on gpus. In 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (pp. 165–168).

  17. Yu, X., Wang, H., Feng, W.-C., Gong, H., Cao, G. (2017). An enhanced image reconstruction tool for computed tomography on gpus. In Proceedings of the Computing Frontiers Conference, CF’17 (pp. 97–106): ACM.

  18. Kak, A.C. (1984). Image Reconstruction from Projections. In Ekstrom, M. (Ed.) Digital Image Processing Techniques, chapter 4, (pp. 111–171). Orlando: Academic Press, INC.

  19. Gilbert, P. (1972). Iterative methods for the three-dimensional reconstruction of an object from projections. Journal of theoretical biology, 36(1), 105–117.

    Article  Google Scholar 

  20. Andersen, A.H., & Kak, A.C. (1984). Simultaneous algebraic reconstruction technique (sart): a superior implementation of the art algorithm. Ultrasonic Imaging, 6(1), 81–94.

    Article  Google Scholar 

  21. Liu, W., & Vinter, B. (2015). Speculative segmented sum for sparse matrix-vector multiplication on heterogeneous processors. Parallel Computing, 49, 179–193.

    Article  MathSciNet  Google Scholar 

  22. Yan, S., Li, C., Zhang, Y., Zhou, H. (2014). yaspmv: Yet another spmv framework on gpus. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’14 (pp. 107–118): ACM.

  23. Ashari, A., Sedaghati, N., Eisenlohr, J., Parthasarath, S., Sadayappan, P. (2014). Fast sparse matrix-vector multiplication on gpus for graph applications. In SC14 (pp. 781–792).

  24. Greathouse, J., & Daga, M. (2014). Efficient sparse matrix-vector multiplication on gpus using the csr storage format. In SC14 (pp. 769–780).

  25. Merrill, D., & Garland, M. (2016). Merge-based sparse matrix-vector multiplication (spmv) using the csr storage format. In 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’16 (pp. 43:1–43:2).

  26. Steinberger, M., Zayer, R., Seidel, H.-P. (2017). Globally homogeneous, locally adaptive sparse matrix-vector multiplication on the gpu. In Proceedings of the International Conference on Supercomputing, ICS ’17 (pp. 13:1–13:11). New York: ACM.

  27. Hou, K., Feng, W.-C., Che, S. (2017). Auto-tuning strategies for parallelizing sparse matrix-vector (spmv) multiplication on multi- and many-core processors. In 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (pp. 713–722).

  28. Wang, H., Liu, W., Hou, K., Feng, W.-C. (2016). Parallel transposition of sparse data structures. In Proceedings of the International Conference on Supercomputing, ICS ’16 (p. 2016).

  29. Nourian, M., Wang, X., Yu, X., Feng, W.-C., Becchi, M. (2017). Demystifying automata processing: Gpus, fpgas or micron’s ap?. In Proceedings of the International Conference on Supercomputing, ICS ’17 (pp. 1:1–1:11). New York: ACM.

  30. Hou, K., Wang, H., Feng, W.-C. (2015). Aspas: A framework for automatic simdization of parallel sorting on x86-based many-core processors, (pp. 383–392). New York: ACM.

    Google Scholar 

  31. Yu, X., Hou, K., Wang, H., Feng, W.-C. (2017). A framework for fast and fair evaluation of automata processing hardware. In 2017 IEEE International Symposium on Workload Characterization (IISWC) (pp. 120–121).

  32. Yu, X., Hou, K., Wang, H., Feng, W.-C. (2017). Robotomata: A framework for approximate pattern matching of big data on an automata processor. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 283–292).

  33. Yu, X., Lin, B., Becchi, M. (2014). Revisiting state blow-up: Automatically building augmented-fa while preserving functional equivalence. IEEE Journal on Selected Areas in Communications, 32(10), 1822–1833.

    Article  Google Scholar 

  34. Yu, X., Feng, W.-C., Yao, D., Becchi, M. (2016). O3fa: A scalable finite automata-based pattern-matching engine for out-of-order deep packet inspection. In 2016 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS) (pp. 1–11).

  35. Yu, X., & Becchi, M. (2013). Gpu acceleration of regular expression matching for large datasets: Exploring the implementation space. In ACM Int’l Conf. on Computing Frontiers, CF ’13 (pp. 18:1–18:10). New York: ACM.

  36. Zhang, J., Wang, H., Feng, W.-C. (2015). cublastp: Fine-grained parallelization of protein sequence search on cpu+gpu. IEEE/ACM Transactions on Computational Biology and Bioinformatics, PP(99), 1–1.

    Article  Google Scholar 

  37. Yu, X., & Becchi, M. (2013). Exploring different automata representations for efficient regular expression matching on gpus. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’13 (pp. 287–288). New York: ACM.

  38. Hou, K., Liu, W., Wang, H., Feng, W.-C. (2017). Fast segmented sort on gpus. In Proceedings of the International Conference on Supercomputing, ICS ’17 (pp. 12:1–12:10). New York: ACM.

  39. Yu, X. (2013). Deep packet inspection on large datasets: Algorithmic and parallelization techniques for accelerating regular expression matching on many-core processors. Master’s thesis, University of Missouri–Columbia.

  40. Keck, B., Hofmann, H., Scherl, H., Kowarschik, M., Hornegger, J. (2009). Gpu-accelerated sart reconstruction using the cuda programming environment. In SPIE Medical Imaging (pp. 72582B–72582B): International Society for Optics and Photonics.

  41. Naumov, M., Chien, L.S., Vandermersch, P., Kapasi, U. (2010). cusparse library. In GPU Technology Conference.

  42. Aktulga, H.M., Buluç, A., Williams, S., Yang, C. (2014). Optimizing sparse matrix-multiple vectors multiplication for nuclear configuration interaction calculations. In 2014 IEEE 28th International Parallel and Distributed Processing Symposium (pp. 1213–1222).

  43. Nickolls, J., Buck, I., Garland, M., Skadron, K. (2008). Scalable parallel programming with cuda. Queue, 6(2), 40–53.

    Article  Google Scholar 

  44. Tao, Y., Deng, Y., Mu, S., Zhang, Z., Zhu, M., Xiao, L., Ruan, L. (2015). Gpu accelerated sparse matrix-vector multiplication and sparse matrix-transpose vector multiplication. Concurrency and Computation: Practice and Experience, 27(14), 3771–3789.

    Article  Google Scholar 

  45. Shepp, L.A., & Logan, B.F. (1974). The fourier reconstruction of a head section. IEEE Transactions on Nuclear Science, 21(3), 21–43.

    Article  Google Scholar 

  46. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  47. Xu, Q., Yu, H., Mou, X., Zhang, L., Hsieh, J., Wang, G. (2012). Low-dose x-ray ct reconstruction via dictionary learning. IEEE Transactions on Medical Imaging, 31(9), 1682–1697.

    Article  Google Scholar 

  48. Du, Y., Wang, X., Xiang, X., Wei, Z. (2016). Evaluation of hybrid SART+OS+TV iterative reconstruction algorithm for optical-CT gel dosimeter imaging. Physics in Medicine & Biology, 61(24), 8425.

    Article  Google Scholar 

  49. Garduño, E., Herman, G.T., Davidi, R. (2011). Reconstruction from a few projections by 1 -minimization of the Haar transform. Inverse Problems, 27(5), 055006.

    Article  MathSciNet  MATH  Google Scholar 

  50. Vandeghinste, B., Goossens, B., Van Holen, R., Vanhove, C., Piurica, A., Vandenberghe, S., Staelens, S. (2013). Iterative ct reconstruction using shearlet-based regularization. IEEE Transactions on Nuclear Science, 60(5), 3305–3317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Wang, H., Feng, Wc. et al. GPU-Based Iterative Medical CT Image Reconstructions. J Sign Process Syst 91, 321–338 (2019). https://doi.org/10.1007/s11265-018-1352-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-018-1352-0

Keywords

Navigation