Skip to main content
Log in

Adaptive Directional Lifting Wavelet Transform VLSI Architecture

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper presents an efficient VLSI architecture of the 2-D wavelet transform for the adaptive directional lifting (ADL) scheme in image coding. To avoid accumulating errors from irrational wavelet transform coefficients, algebraic integers with appropriate input scaling parameters are used. A two-parallel architecture with zigzag processing of the image stream is used to increase the throughput. In a 45-nm CMOS technology, the synthesis results indicate that the proposed architectures for the Daub-4 and 5/3 wavelets can operate at a clock frequency of about 250 MHz with an estimated throughput of 4 Gb/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. ISO/IEC FCD15444-1: 2000, “JPEG 2000 image coding system,” 2000.

  2. ISO/IEC FCD 14496–2, Information Technology – “Coding of Audio-Visual Objects,” 2004.

  3. Daubechies, I., & Sweldens, W. (1998). Factoring wavelet transforms into lifting steps. Journal of Fourier Analysis and Applications, 4(3), 247–269.

    Article  MathSciNet  MATH  Google Scholar 

  4. Sweldens, W. (1995). Lifting scheme: A new philosophy in biorthogonal wavelet constructions. Proc. SPIE Wavelet Applications in Signal and Image Processing III, 2569, 68–79.

    Article  Google Scholar 

  5. Gerek, O. N., & Cetin, A. E. (2006). A 2-D orientation-adaptive prediction filter in lifting structures for image coding. IEEE Transactions on Image Processing, 15(1), 106–111.

    Article  Google Scholar 

  6. Ding, W., Wu, F., Wu, X., Li, S., & Li, H. (2007). Adaptive directional lifting-based wavelet transform for image coding. IEEE Transactions on Image Processing, 16(2), 416–427.

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, Y., & Ngan, K. N. (2008). Weighted adaptive lifting-based wavelet transform for image coding. IEEE Transactions on Image Processing, 17(4), 500–511.

    Article  MathSciNet  Google Scholar 

  8. Dabhole, S. & Jadhav, S. (2015). An efficient codec of 2D adaptive directional lifting based on CDF9/7 with improved SPIHT algorithm for lossy to lossless image coding. Proc., IEEE 2nd international conference on electronics and communication system (ICECS), pp. 84–91.

  9. Shin, M. & Kyochi, S. (2015). Adaptive directional lifting wavelet-based lossless image coding with directional data hiding. Proc. IEEE 4th Global Conference on Consumer Electronics (GCCE), pp. 173–174.

  10. Hsia, C.-H. et al (2015). Document image enhancement using adaptive directional lifting-based wavelet transform. Proc. international conference on consumer electronics–Taiwan (ICCE-TW), pp. 432–433.

  11. Lama, R. et al (2014). Color image interpolation for high resolution display based on adaptive directional lifting based wavelet transform. Proc. IEEE international conference on consumer electronics (ICCE), pp. 219–221.

  12. Darazi, R. et al (2013). Using disparity map for directional adaptive lifting scheme for stereo image residuals. Proc. international conference on communications and information technology (ICCIT), pp. 201–204.

  13. Chen, J. et al (2012). Accelerating adaptive directional lifting based wavelet decomposition on GPU using CUDA. Proc., IEEE 11th international conference on signal processing (ICSP), pp. 413–416.

  14. Cozzens, J. H., & Finkelstein, L. A. (1985). Computing the discrete Fourier transform using residue number systems in a ring of algebraic integers. IEEE Trans. Information Theory, IT-31(5), 580–588.

    Article  MathSciNet  Google Scholar 

  15. Madishetty, S. K., Madanayake, A., Cintra, R. J., Dimitrov, V. S., & Mugler, D. H. (2013). VLSI architectures for the 4-tap and 6-tap 2-D Daubechies wavelet filters using algebraic integers. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(6), 1455–1468.

    Article  MathSciNet  Google Scholar 

  16. Balakrishnan, P. & Wahid, K. (2013). A novel lifting algorithm for Daubechies wavelets using algebraic integers. Proc. 24th IEEE Canadian Conf. Electr. Comput. Eng. (CCECE ‘13), Regina, SK, CA., pp. 1–4.

  17. Le Gall, D. & Tabatabai, A. (1984). Sub-band coding of digital images using symmetric short kernel filters and arithmetic coding techniques. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP ‘84), New York, NY, USA, pp. 761–764.

  18. Andra, K., Chakrabarti, C., & Acharya, T. (2002). A VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE Transactions on Signal Processing, 50(4), 966–977.

    Article  Google Scholar 

  19. Angelopoulou, M. E., Cheung, P. Y. K., Masselos, K., & Andreopoulous, Y. (2008). Implementation and comparison of 5/3 lifting 2D discrete wavelet transform computation schedules on FPGAs. J. Signal Processing Systems, 51(1), 3–21.

    Article  Google Scholar 

  20. Dia, D., Zeghid, M., Saidani, T., Atri, M., Bouallegue, B., Machhout, M. & Tourki, R. (2009). Multi-level discrete wavelet transform architecture design. Proc. World Congress on Engineering (WCE '09), vol. I, London, U.K., pp. 191–195.

  21. Liu, L., Meng, H. & Zhang, M. (2006). An ASIC implementation of lifting-based 2-D discrete wavelet transform. Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS ‘06), Singapore, pp. 271–274.

  22. Seo, Y., & Kim, D. (2007). VLSI architecture of line-based lifting wavelet transform for motion JPEG2000. IEEE Journal of Solid-State Circuits, 42(2), 431–440.

    Article  Google Scholar 

  23. Yamauchi, H. et al (2003). Image processor capable of block-noise-free JPEG2000 compression with 30 frames/s for digital camera applications. Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC ‘’03), San Francisco, CA, USA, vol. 1, pp. 45–477.

  24. Madishetty, S. K. (2013). VLSI architecture for the 4-tap and 6-tap 2-D Daubechies wavelet filters using algebraic integers. M.S. thesis, Dept. Electrical and Computer Eng., Univ. of Akron, OH, USA.

Download references

Acknowledgements

This work was supported by the State Key Laboratory of ASIC & System, grant no. 2016GF010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangho Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, S., Sobelman, G.E. & Zhou, X. Adaptive Directional Lifting Wavelet Transform VLSI Architecture. J Sign Process Syst 91, 551–559 (2019). https://doi.org/10.1007/s11265-018-1353-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-018-1353-z

Keywords

Navigation