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Abstract Massive multiple-input multiple-output (M-

MIMO) technique brings better energy efficiency and

coverage but higher computational complexity than small-

scale MIMO. For linear detections such as minimum

mean square error (MMSE), prohibitive complexity lies

in solving large-scale linear equations. For a better trade-

off between bit-error-rate (BER) performance and com-

putational complexity, iterative linear algorithms like

conjugate gradient (CG) have been applied and have

shown their feasibility in recent years. In this paper,

residual-based detection (RBD) algorithms are proposed

for M-MIMO detection, including minimal residual (MIN-

RES) algorithm, generalized minimal residual (GMRES)

algorithm, and conjugate residual (CR) algorithm. RBD

algorithms focus on the minimization of residual norm

per iteration, whereas most existing algorithms focus
on the approximation of exact signal. Numerical results

have shown that, for 64-QAM 128× 8 MIMO, RBD al-

gorithms are only 0.13 dB away from the exact matrix

inversion method when BER= 10−4. Stability of RBD

algorithms has also been verified in various correlation

conditions. Complexity comparison has shown that, CR

algorithm require 87% less complexity than the tradi-

tional method for 128×60 MIMO. The unified hardware

architecture is proposed with flexibility, which guaran-

Chuan Zhang],∗ · Yufeng Yang] · Zichen Zhang · Xiaohu You
Lab of Efficient Architectures for Digital-communication and
Signal-processing (LEADS), National Mobile Communica-
tions Research Laboratory, Quantum Information Center,
Southeast University, Nanjing, China
E-mail: {chzhang, yfyang, zczhang, xhyu}@seu.edu.cn
]contributed equally to this work, ∗corresponding author

Shunqing Zhang
Shanghai Institute for Advanced Communications and Data
Science, Shanghai University, Shanghai, China.
E-mail: shunqing@shu.edu.cn

tees a low-complexity implementation for a family of

RBD M-MIMO detectors.

Keywords Massive MIMO · residual-based detection ·
minimal residual · conjugate residual · unified hardware

1 Introduction

Multiple-input multiple-output (MIMO) is a key tech-

nique for wireless communications [1] and has been in-

corporated into standards such as the 3rd generation

partnership project (3GPP) long term evolution (LTE)

and IEEE 802.11n [2]. By equipping hundreds of anten-

nas at transmitters and serving relatively a small num-

ber of users [3], its advanced version massive MIMO

(M-MIMO) provides significant improvement in spec-

tral efficiency, interference reduction, transmit-power

efficiency, and link reliability [4].

Because of the large antenna number at base sta-

tion (BS) or user side, computational complexity be-

comes unaffordable in M-MIMO detection. Among ex-

isting detections, zero forcing (ZF) is a basic way, which

neglects the effect of noise [5]. However, its performance

is not satisfactory. Though linear schemes like mini-

mum mean square error (MMSE) [6] improve the per-

formance compared with ZF, its computation complex-

ity still increases drastically as the antenna number

grows. For a M-MIMO channel H, computational com-

plexity of MMSE inversion is O(M3), which makes it

costly in applications [7]. To avoid matrix inversion,

Neumann series expansion (NSE) [8–10] has been em-

ployed for approximation. However, complexity remains

unaffordable when NSE terms become more than 2.

Thus, iterative linear solvers are proposed for further

reduction, such as Gauss-Seidel [11, 12] and conjugate
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gradient (CG) [13, 14]. Methods like successive over-

relaxation (SOR) [15, 16] and its variation [17] are also

considered. Meanwhile, efficient optimizations of algo-

rithms are also proposed like precondition [18, 19]. Most

iterative linear detectors can reduce MMSE’s complex-

ity to O(M2) with tolerable performance loss.

It is worth noting that existing algorithms mainly

focus on approximating exact solution [20], whereas

this paper proposes residual-based detection (RBD) al-

gorithms which focus on the minimization of residual

norm. Firstly, minimal residual (MINRES) algorithm,

which is a basic RBD, is considered. Its extended ver-

sion, generalized minimal residual (GMRES) by [21]

is also considered, with unavoidable drawbacks, which

will be detailed below. In M-MIMO scenario, GMRES

can be derived into another version: conjugate residual

(CR). Computation process and convergence proof of

each RBD algorithm are elaborated. Numerical results

under different antenna configurations and correlations

are given as well. For lower complexity, the iteration

number is chosen as 2, 3, and 4, respectively. Complex-

ity comparison among proposed RBD algorithms and

the traditional one is also shown, to demonstrate RBD

algorithms’ advantages in performance and complexity.

For application considerations, efficient hardware ar-

chitectures of RBD algorithms are required. In this pa-

per, hardware architectures of MINRES and CR algo-

rithms are proposed. However, as a family of algorithm,

computation similarity can be referred and accordingly

a unified design method is proposed. The hardware ar-

chitecture can be given by two common modules: iter-

ative module and coefficient module. Unified hardware

architecture for both MINRES and CR algorithms is

further proposed, which can also take care of GMRES.

Moreover, the proposed design method can be also ap-

plied in some RBD and other iterative detectors.

The remainder of the paper is organized as follows.

Section 2 gives the system models of non- and corre-

lated M-MIMO detectors. Section 3 employs RBD al-

gorithms and shows the convergence proof for each al-

gorithm. Numerical results are given in Section 4. Sec-

tion 5 elaborates the computational complexity of RBD

algorithms. Section 6 proposes the hardware architec-

tures of RBD algorithms and the unified design method.

Finally, Section 7 concludes the entire paper.

Notation: The lowercase and upper bold face let-

ters stand for column vector and matrix, respectively.

The operations (.)T and (.)H denote transpose and con-

jugate transpose, respectively. The entry in the i-th row

and j-th column of A is A(i, j). The vector α in the

k-th iteration is αk. Complexity is denoted in terms of

complex-valued multiplication number.

2 System Model for Massive MIMO Uplink

2.A Linear Detection Model

Consider an uplink of a massive MIMO system with

N antennas at the base station (BS), which simulta-

neously serves M single antenna users. Here, N is al-

ways much bigger than M (N >> M). The transmit-

ted signal and received vectors are denoted by s =

[s1, s2, ..., sM ]T and y = [y1, y2, ..., yN ]T , respectively,

where s ∈ CM , y ∈ CN . Then the system model is

y = Hs + n, (1)

where H is an N × M uplink channel matrix, n is

the vector representing Additive White Gaussian Noise

(AWGN) with zero-mean and variance σ2.

According to MMSE equalization scheme, at the BS

side, the estimate of the transmitted symbol vector ŝ is

ŝ = (HHH + σ2IM )−1HHy = A−1ỹ, (2)

where the matrix I means identity matrix with dimen-

sion M , and the MMSE filtering matrix A is defined

based on Gram matrix G:

A = G + σ2IM , (3)

where G = HHH.

Correspondingly, output of matched filter ỹ is

ỹ = HHy. (4)

Nevertheless, computational complexity of exact ma-

trix inversion A−1 is O(M3). Methods such as Cholesky

decomposition based method are not suitable for M-

MIMO detection when its scale increases.

2.B Correlated Channel Model

Consider correlation of antennas for M-MIMO, this pa-

per applies Kronecker model in [22] and H can be de-

noted by H = R
1/2
r WR

1/2
t , where W ∈ CN×M is an

N ×M i.i.d. channel matrix with zero mean and unit

variance. Meanwhile Rr ∈ CN×N and Rt ∈ CM×M are

spatial correlation matrices at BS and user side:

Rr(i, k) =

{
(ζre

jθ)k−i, i ≤ k,
R
′

r(k, i), i > k;
(5)

Rt(i, k) =

{
(ζte

jθ)k−i, i ≤ k,
R
′

t(k, i), i > k.
(6)

The i-th row and k-th column is denoted by R(i, k).

R
′

t and R
′

r are conjugate matrices of Rt and Rr, respec-

tively. This paper contains four scenarios of correlation

condition to elaborate common M-MIMO detectors.
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- Uncorrelated : In this condition, correlations of BS

and users are ignored, which means correlation fac-

tor ζt = ζr = 0. Under this circumstance, R
1/2
t and

R
1/2
r are actually IN and IM , respectively. Then H

is the ideal i.i.d. Rayleigh fading channel matrix.

- User Correlated : For multi-antenna users, if the dis-

tance between two BS antennas is larger than half-

wavelength, correlation between BS antennas can be

neglected. In this condition R
1/2
r becomes diagonal

matrix Dr thus H = DrWR
1/2
t .

- BS Correlated : For single-antenna users, correlation

among users is omitted. Nevertheless, as M-MIMO

contains large-scale antenna array, pathloss between

BS and users cannot be ignored. Thus the channel

is H = R
1/2
r WDt, where Dt is a diagonal matrix

where pathloss attenuation factor is represented.

- Fully Correlated : When fully correlated, both user

and BS should be considered. Thus matrix remains

H = R
1/2
r WR

1/2
t , where R

1/2
r and R

1/2
t are shown

in Eq.s (5) and (6), respectively.

3 Residual-Based Detection Algorithms

In this section residual-based detection (RBD) is pro-

posed as a series. For a linear detection problem

As = y, (7)

suppose that s∗ denotes the exact estimation of detec-

tion signal, existing detection methods mainly focus on

the approximation of s to s∗, which is denoted by the

absolute error ‖s−s∗‖. Whereas vector r = ‖y−As‖ de-

notes the residual norm of the signal, RBD algorithms

mainly focus on the minimization of vector r in the

computation process. This section will give detailed de-

scription of RBD algorithms and the relationship be-

tween these algorithms will be given too.

3.A Minimal Residual Algorithm

As a kind of projection algorithm for massive MIMO

detection, proposed minimal residual (MINRES) [23] is

the simplest algorithm for its short calculation process,

which is shown in Algorithm 1.

It is easily shown that MINRES minimizes the func-

tion f(s) = ‖y−As‖22 in the direction of r. Since MIN-

RES is the simplest RBD algorithm, it requires the fil-

tering matrix A only to be positive definite. Since the

MMSE filtering matrix A is symmetric positive definite

(SPD), the requirement can be met easily. So

‖rk+1‖22 = (rk −αkArk, rk −αkArk)

= (rk −αkArk, rk)−αk(rk −αkArk,Ark).
(8)

Algorithm 1 Minimal Residual Algorithm

Input: A and ỹ

1: for k = 0, . . . ,K do

2: rk = ỹ −Ask

3: αk =
rHk Ark
‖Ark‖2

4: sk+1 = sk + αkrk
5: end for

Output: ŝ = sK+1

For the vector rk − αkArk is orthogonal to search

direction Ark, thus the right side of Eq. (8) vanishes

and therefore

‖rk+1‖22 = (rk −αkArk, rk)

= (rk, rk)−αk(Ark, rk)

= ‖rk‖2(1− (Ark, rk)

(rk, rk)

(Ark, rk)

(Ark,Ark)
)

= ‖rk‖2(1− (Ark, rk)2

(rk, rk)2
‖rk‖22
‖Ark‖22

).

(9)

For the positive definite matrix A,

(Ax,x)

(x,x)
≥ λmin(A + AT )/2 > 0. (10)

Since matrix A is positive definite, its inversion A−1

is positive definite, too. Similarly, let t = Ax then

(Ax,x)

(Ax,Ax)
=

(t,A−1t)

(t, t)
≥ λmin(A−1+A−T )/2 > 0.(11)

Finally, let µ(A) denotes λmin(A + AT )/2, then

‖rk+1‖22 ≤ (1− µ(A)µ(A−1))‖rk‖22. (12)

From the derivation given, residual norm in MIN-

RES algorithm decreases after each iteration, thus the

convergence of MINRES can be proven.

3.B Generalized Minimal Residual Algorithm

The Generalized Minimal Residual (GMRES) Algorithm

is an iterative method to calculate the solution of non-

symmetric system of linear systems [23]. It is the gener-

alized version of MINRES, GMRES inference canceller

was proposed in [21, 24] first and in this paper, the

essence of GMRES will be introduced. Some compu-

tation processes to elaborate the computation process

of GMRES are supplemented in this paper. As a pro-

jection method based on κ = κV in which κV is V -th

Krylov subspace, GMRES can minimize the residual

norm to approximate the exact solution of As = y by

the vector sk ∈ κk, where

κV = span{y,Ay,A2y, ...,AV−1y}. (13)



4 Chuan Zhang et al.

To avoid the linear independence of vectors y,Ay,...,

AV−1y, Arnoldi iteration [25] is used to form orthog-

onal basis q1,q2, ...,qV for κV . Thus vector sV ∈ κV
can be rewritten as s = s0 + QV pV , where QV is an

m-by-V matrix formed by basis q1,q2,...,qV .

Meanwhile, a (V +1)-by-V upper Hessenberg matrix

H̃V is produced in the Arnoldi iteration process, where

AQV = QV+1H̃V . (14)

Thus, the whole GMRES process can be deduced.

Define

J(p) = ‖y −As‖2 = ‖y −A(s0 + QV p)‖2
= ‖r0 −AQV p‖2
= ‖βq1 −QV+1H̃V p‖2
= ‖QV+1(βe1 − H̃V p)‖2.

(15)

Since the column-vectors of QV+1 are orthogonal,

it is easy to understand that

J(p) = ‖βe1 − H̃V p‖2. (16)

With the definition of J(p), GMRES algorithm min-

imizes it and make the signal approximating s0 + κV .

After knowing this, GMRES approximation can be de-

noted by simple equation

sV = s0 + QpV , (17)

where

pV = arg min ‖βe1 − H̃V pV ‖2. (18)

Accordingly, the computation process of GMRES

algorithm is shown in Algorithm 2.

With the information given, M-MIMO detection prob-

lems can be solved easily. However, key step of GMRES

is step-12 in Algorithm 2, which is not mentioned in

[21, 24]. To supplement the process of GMRES and

make it easier to be understood, Givens rotation to

solve this optimization problem is introduced in this

paper and can be seen in Appendix A.

For matrix A, (AT +A)/2 is positive definite, then

in the k-th iteration,

‖rk‖ ≤ (1− λ2min(1/2(AT + A))

λmax(ATA)
)n/2‖r0‖, (19)

where λmin(M) and λmaxM denote the minimum and

maximum eigenvalue of matrix M, respectively.

While in M-MIMO detection scheme, matrix A is

SPD, then Eq. (19) can be deformed to

‖rk‖ ≤ (
τ2(A)2 − 1

τ2(A)2
)n/2‖r0‖, (20)

where τ2(A) is the condition number of A.

From Eq.s (19) and (20), it can be seen that resid-

ual norm of GMRES strictly decreases after iterations,

Algorithm 2 Generalized Minimal Residual Algo-

rithm
Input: A and ỹ

r0 = ỹ −As0, β = ‖r0‖2 and q1 = r0/β

Define the (V + 1)-by-V matrix H̃V . H̃V = 0

1: for j = 1, . . . , V do

2: wj = Aqj
3: for i = 1, . . . , j do

4: H̃(i, j) = qTi wj

5: wj = wj − H̃(i, j)qi
6: end for

7: H̃(j + 1, j) = ‖wj‖2
8: if H̃(j + 1, j) = 0 then

9: V = j and go to 13

10: end if

11: qj+1 = wj/H̃(j + 1, j)

12: pV = arg min ‖βe1 − H̃V p‖2
13: sk = sk−1 + QV pV
14: end for

Output: ŝ = sV

which shows the convergence of it. Synthesizing Arnoldi

GMRES algorithm and Givens rotation, the complete

GMRES algorithm is a kind of advanced algorithm as

a M-MIMO detection method by minimizing the norm

of the residual vector.

3.C Conjugate Residual Algorithm

As can be seen in Section 3.B, complete GMRES algo-

rithm needs too many operations and some of them are

square root, and even matrix inversion from Givens ro-

tation, which should be avoided in M-MIMO detection

scheme. To remedy this and keep the performance of

the algorithm for M-MIMO detection, GMRES can be

updated to an advanced version.

Consider GMRES is an algorithm for nonsymmet-

ric problem, while M-MIMO detection is solving a SPD

problem, some restrictions can be added to GMRES,

which makes the GMRES algorithm involving into the

proposed conjugate residual (CR) algorithm. Switch-

ing nonsymmetric problems to Hermitian problems, CR

can lower the computational complexity of GMRES.

Being another Krylov subspace iterative method, CR

also minimizes the residual vector in each iteration and

is feasible in M-MIMO detection. Computation process

of CR algorithm is shown in Algorithm 3.

The output ŝ can be proved to support the conver-

gence of the algorithm [26]. For CR on an SPD system,

‖sk‖2 − ‖sk−1‖2 = 2αks
T
k−1pk−1 + pTk−1pk−1 ≥ 0. (21)
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Algorithm 3 CR for MMSE detection

Input: A and ỹ

s0 = 0, r0 = ỹ −As0, p0 = r0
e0 = Ap0, m0 = Ar0

1: for k = 1, . . . ,K do

2: αk = rHk−1mk−1/‖ek−1‖2
3: sk = sk−1 + αkpk−1
4: rk = rk−1 −αkek−1
5: mk = Ark
6: βk = rHk mk/r

H
k−1mk−1

7: pk = rk + βkpk−1
8: ek = mk + βkek−1
9: end for

Output: ŝ = sK

Therefore,

‖sk‖ ≥ ‖sk−1‖. (22)

Then, final solution can be expressed as sl = s∗,

sl = sl−1 + αl−1pl−1

= · · ·
= sk + αk+1pk + · · ·+ αl−1pl−1

= sk−1 + αkpk−1 + αk+1pk + · · ·+ αl−1pl−1.

(23)

From the conclusion above, it can be deduced that

‖sl − sk−1‖2 − ‖sl − sk‖2

= 2αkp
T
k−1(αk+1pk + · · ·+ αl−1pl−1) + α2

kp
T
K−1pk−1 ≥ 0.

(24)

While for the MMSE linear detection problem, lin-

ear equation As = y is to be solved. Thus

‖sl − sk−1‖2A − ‖sl − sk‖2A
= 2αkp

T
k−1A(αk+1pk + · · ·+ αl−1pl−1) + α2

kp
T
k−1Apk−1

= 2αkq
T
k−1(αk+1pk + · · ·+ αl−1pl−1) + α2

kq
T
k−1pk−1 > 0.

(25)

The derivation above indicates that the residual norm

is strictly decreasing. Thus CR is feasible for massive

MIMO detection.

4 Numerical Results and Comparison

4.A Results with Different Antenna Configurations

With 64-QAM and i.i.d. channel model, the bit-error-

rate (BER) comparison between each RBD algorithm

and two antenna configurations are considered. Here

iteration time k is set as 2, 3 and 4, respectively.

It is worth noting that because CR algorithm is a

derivation of GMRES algorithm in M-MIMO scheme,

they have the same BER performance as mentioned in

Section 3.C. For better elaboration, it is also shown

in Fig. 1. It can be seen that when k = 4, both of
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CR (Iteration k=4)

Cholesky Inversion

Fig. 1: Performance comparison with N×M = 128×16.

them approximate traditional matrix inversion. To be

specific, when BER= 10−4, CR has only 0.28 dB gap

between Cholesky decomposition.

Here Fig.s 2 and 3 compares BER performance of

each RBD algorithm when the antenna configuration is

N ×M = 128× 16 and 128× 8, respectively. In Fig. 2,

when BER= 10−3 and iteration time k = 4, MINRES

has 2.3 dB drawback compared with Cholesky decom-

position while GMRES and CR have only 0.18 dB gap

with Cholesky decomposition. Performance of RBD al-

gorithms improve a lot along with the increment of it-

eration time k. Meanwhile, GMRES and CR outper-

form MINRES a lot. For example, when BER= 10−2

and iteration time k = 3, CR and GMRES outperform

MINRES by 2.73 dB SNR gap.
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MINRES (Iteration k=3)

MINRES (Iteration k=4)

Cholesky Inversion

Fig. 2: Performance comparison with N×M = 128×16.

For another antenna configuration N×M = 128×8,

as shown in Fig. 3, RBD algorithms perform well in ap-

proximating Cholesky decomposition scheme. MINRES

has huge performance improvement as iteration time in-
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creases. Take BER= 7×10−2 for instance, MINRES has

6.2 dB gain when iteration time increases from k = 2 to

k = 3. CR and GMRES have almost the same perfor-

mance with exact matrix inversion when iteration time

k ≥ 3, in which condition SNR gap between them is

less than 0.2 dB.
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Fig. 3: Performance comparison with N×M = 128×8.

4.B Results with Different Correlation Conditions

Consider N ×M = 128× 8 M-MIMO system and iter-

ation time is 4, BER performances of each RBD algo-

rithm and Cholesky decomposition are given in Fig. 4.

Here three conditions are considered: i) User Corre-

lated case (ζt = 0.2, ζr = 0), ii) BS correlated case

(ζt = 0, ζr = 0.3), iii) Fully Correlated case: (ζt =

0.2, ζr = 0.3).
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Fig. 4: Performance comparison with correlations.

In Fig. 4, as the correlation factor ζ varies, per-

formance of GMRES and CR remain stable and the

performance loss is less than 0.5 dB. MINRES algo-

rithm will suffer from the change of the correlation

condition. However, MINRES loses up to 1.7 dB when

BER= 9 × 10−2. Thus RBD algorithms are not very

sensitive to correlation conditions for M-MIMO.

5 Computational Complexity Analysis

Computational complexity of each RBD algorithm is

compared to describe the complexity issue of RBD al-

gorithms. In this section computational complexity is

analyzed for better understanding of RBD algorithms.

As mentioned in Section 3.A, MINRES algorithm is the

basic algorithm in RBD algorithms. GMRES algorithm

is the generalized version of MINRES and is complex

in computation process. To meet the requirement of

M-MIMO system, GMRES can be derived into CR al-

gorithm, which is suitable for M-MIMO detection. Ta-

ble 1 concludes the comparison of different algorithms

in terms of complex-valued additions and complex-valued

multiplications.

The detection complexity is mainly contributed by

complex-valued multiplication. The complexity of each

algorithm is compared with Cholesky decomposition.

Suppose the antenna number at BS is 128 and SNR is

20 dB. Complexity comparison is shown in Fig. ??.
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Fig. 5: Computational complexity comparison.

5.A Complexity of MINRES

Being the basic RBD, MINRES has the simplest com-

putation process, though in Fig. ?? its complexity is not

the least. However, when user antenna number is 60,
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Operation MINRES GMRES CR

Addition 2kM (1
2
k2 + 3

2
k + 1)M (4K + 1)M

Multiplication 4kM2 + 2kM (5
2
k2 + 1

2
k + 1)M2 + (1

2
k2 + 1

2
k)M (k + 3)M2 + 8kM

Table 1: Complexity Comparison of Different Algorithms.

MINRES can achieve 76% complexity reduction com-

pared with traditional matrix inversion after 3 itera-

tions. Thus the complexity reduction outweighs the per-

formance loss in terms of trade-off.

5.B Complexity of GMRES

As a generalized version of MINRES, GMRES has more

application scenarios. However, its complexity rises also.

As shown in Fig. ??, GMRES has higher complexity

than other RBD algorithms. Similarly, when user an-

tenna number is 60, GMRES reduces the complexity of

traditional method by 50% after 3 iterations.

5.C Complexity of CR

It is clear that CR has the lowest complexity of RBD

algorithms: in the same condition, CR reduces the com-

plexity of traditional method by 87% when user an-

tenna number is 60 after 3 iterations. Having the BER

performance in Section 4, CR is the best algorithm

in RBD algorithms and can substitute GMRES in M-

MIMO.

6 Hardware Architecture for RBD Algorithms

Computational process of RBD algorithms is introduced

in Section 3. To further elaborate RBD algorithms, cor-

responding hardware architectures are shown in Sec-

tion 6.A and 6.B. Since GMRES algorithm maintains

the same BER performance as CR algorithm with unaf-

fordable computational complexity, GMRES algorithm

is not hardware friendly. Thus the implementation of

GMRES is replaced by CR algorithm. A method to

unify the hardware design is also proposed in Section

6.C. Using the new design method, RBD algorithms

can be designed by only two basic modules. Unified

architectures of MINRES and CR are proposed in Sec-

tion 6.C to validate the design method.

6.A Hardware Architecture of MINRES Algorithm

As mentioned in Section 3.A, MINRES is the most basic

algorithm of RBD algorithm, thus the hardware archi-

tecture of it is not very complex. Being divided into

two units, Fig. 7 shows the architecture of MINRES

algorithm. Preprocessing Unit computes the output of

matched filter ỹ and matrix A. Minimal Residual Al-

gorithm Unit is the main unit of the architecture and it

minimizes the residual norm in each iteration. In Fig. 7,

ỹ is denoted by yE and the symbol output is denoted

by sk+1, where the index k is iteration time.

6.A.1 Preprocessing Unit

In this unit, matched filter module computes ỹ by ỹ =

HHy while MMSE filtering matrix A is computed by

Gram matrix module. Since matrix A is Hermitian,M×
M lower triangular systolic array is adopted to compute

it. Each processing element (PE) performs a multiply-

accumulate (MAC) operation with same inputs.

6.A.2 Minimal Residual Algorithm Unit

In this unit, symbol signals are stored and computed

iteratively. Square module with r, m, s, α stores the

corresponding signals of each iteration. The hermitian

of symbol is given after hermitian conjugate module and

module with “/” means division operation, in which the

input from downside is the divisor. Module with “D”

is the delayer which can provide the signal of last iter-

ation for the algorithm. “Mod” module computes the

modulus of the input signal. At the end of the iteration,

output sk is the final symbol output of MINRES.

6.B Hardware Architecture of CR Algorithm

Being another RBD algorithm, CR has much lower com-

putational complexity compared with traditional exact

matrix inversion. As is shown in Section6.A.1, CR has

better performance than MINRES. Thus CR performs

well in terms of performance within RBD algorithms.

Hardware architecture of CR contains three parts: pre-

processing unit, conjugate residual algorithm unit, out-

put unit. Same with that of Section 6.A.1, preprocessing

unit computes ỹ and A. Conjugate residual algorithm

unit is the main unit and it computes symbol signals

iteratively to minimize residual norm as well.
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6.B.1 Preprocessing Unit

Functioning as a preliminary unit, this unit has the

same architecture with that in Section 6.A.1.

6.B.2 Conjugate Residual Algorithm Unit

As the main computing unit of CR algorithm, this unit

adopts similar functional modules with that in Sec-

tion 6.A.2. Differently, with the output of preprocess-

ing unit, CR algorithm needs initialization, which is

denoted by the input from the downside of the storage

module of vector r, p, e, m. Meanwhile, in this archi-

tecture the left input of division module is dividend and

the upper input is the divisor of division operation.

6.B.3 Output Unit

With the output of CR algorithm unit, we provide the

estimation of transmitted signal stored in s. When the

iteration ends, final symbol output is denoted by sE .

6.C Unified Hardware Architecture

Being RBD algorithm, MINRES and CR have differ-

ent architectures. Thus in terms of implementation they

are uncorrelated. Thanks to the special characteristic of

RBD algorithm that the minimization of residual norm,

RBD algorithms can be designed by a unified design

method. In this part a design method to normalize the

hardware architecture of RBD algorithm is firstly in-

troduced and then unified architecture of MINRES and

CR are given.

6.C.1 Normalizing Design Method of RBD Algorithms

The purpose of the normalizing design method is to

make the hardware design of RBD algorithms flexible

and reusable, users can switch detectors with existing

hardware resources as long as they want to. To meet

this purpose, synthesizing the characteristic of RBD al-

gorithms, which is minimizing the residual norm, the

normalizing design method is then applied.

Consider the computation process and hardware mod-

ule of RBD algorithms, this method takes two modules

as basic modules: iterative module and coefficient mod-

ule. Iterative module can iteratively update the signal

or compute the residual norm in each iteration. Another

module is coefficient module which computes the coeffi-

cient of each vector in computation process. Hardware

architectures of both basic modules are shown in Fig. 8.

Iterative module consists of two operation unit, a

multiplier and an accumulator, which performs a MAC

operation. Coefficient module consists of two Hermitian

conjugate module, a division module and a multiplier,
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Fig. 8: Basic modules of unified hardware architecture.

which provides the coefficient for each iteration module.

Upper input of this module is the dividend and the

input from downside is the divisor. Operation of each

module can be denoted by
y = x + ab,

c =
mHn

pHq
.

(26)

Having these two basic modules, hardware architec-

tures of RBD algorithms can be unified. Besides basic

modules, only some multipliers and delayers are needed.

Thus the flexibility of hardware can be improved and

the architecture can be reused for further usage. Those

two basic modules can also be used in some other itera-

tive detection algorithms. To validate the reasonability

of this design method, unified hardware architectures

are given in Section 6.C.2 and 6.C.3.

6.C.2 Unified Architecture of MINRES Algorithm

As the basic algorithm of RBD algorithms, MINRES

does not need many basic modules, the unified archi-

tecture of it contains two iterative modules and a coef-

ficient module.

Input signal of this unified architecture is also com-

puted from Gram matrix module and matched filter. By

normalizing design method, MINRES algorithm adopts

two iterative modules to store the residual r and signal

s. Coefficient module serves for the coefficient α. Aside

from basic modules, unified hardware architecture of

MINRES only has an additional multiplier. After the

computation of iteration, symbol output is given as the

output of an iterative module.

6.C.3 Unified Hardware Architecture of CR Algorithm

Traditional hardware architecture of CR algorithm is

kind of complex as shown in Fig. 6. After normalization,

the architecture is shown in Fig. 10.

Unified hardware architecture of CR algorithm con-

tains four iterative modules and two coefficient mod-
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Fig. 9: Unified architecture of MINRES algorithm.

ules. Iterative modules are placed for the storage of sig-

nal r, e, p and s. Coefficient modules store the value of

coefficient α and β. Within each iteration, signal m is

updated by a multiplier and two delayers in the archi-

tecture store corresponding signal of last iteration, as

mentioned in Algorithm 3. Initialization of each signal

is the upper input of each module.

With the proposed method in Section 6.C.1, hard-

ware architectures of RBD algorithms can be unified.

Furthermore, the design method can also be applied to

other linear iterative detectors like CG.

7 Conclusion

In this paper, RBD algorithms are first proposed, in-

cluding MINRES algorithm, GMRES algorithm and

CR algorithm. Distinguished from most of other iter-

ative linear detection algorithms, proposed RBD algo-

rithms focus on the minimization of residual norm. Nu-

merical results of different antenna configurations and

correlation conditions have demonstrated the approx-

imation to the performance of traditional matrix in-

version and the stability of algorithms, respectively. In

addition, computational complexity of RBD algorithms

are compared and the comparison with matrix inversion

shows the complexity reduction advantage of RBD al-

gorithms. Finally hardware architectures of RBD algo-

rithms are first given and the following proposed nor-

malizing design method is adopted, then the unified

hardware architectures of RBD algorithms are proposed.

Therefore, the proposed RBD algorithms are of good

performance, low complexity, and correlation robust-

ness, which are favorable for M-MIMO systems. Future

work will be directed towards FPGA implementation

of RBD algorithms and further optimization of RBD

algorithms.

Acknowledgements To be edited.
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A Derivation of Givens rotation

Given the problem p = arg min ‖βe1 − H̃V p‖2, knowing that

H̃V is a (V + 1)-by-V matrix. It is shown that an over-
constrained linear system of V + 1 equations for V unknowns
is given and the minimum can be computed by QR decom-
position [27]. An (V + 1)-by-(V + 1) orthogonal matrix ΩV

and an (V + 1)-by-V upper triangular matrix R̃V such that

ΩV H̃V = R̃V .
Because of the characteristic of matrix H̃V and R̃V , they

can be denoted as

H̃V +1 =

[
H̃V hV +1

0 hV +2,V +1

]
, R̃V =

[
RV

0

]
, (27)

where hV +1 = (h1,V +1,...,hV +1,V +1)T . Premultiplying the
Hessenberg matrix with ΩV , a nearly triangular matrix can
be yielded with zeros and a row with multiplicative identity
as[

ΩV 0
0 1

]
H̃V +1 =

RV rV +1

0 ρ
0 σ

 . (28)

If σ = 0, this matrix would be triangular. Givens rotation
[28] will remedy this as

GV +1 =

 IV 0 0
0 cV bV
0 −bV cV

 , (29)

where

cV =
ρ√

ρ2 + σ2
and bV =

σ√
ρ2 + σ2

. (30)

After the processing of Givens rotation, matrix ΩV can
be formed as

ΩV +1 = GV

[
ΩV 0

0 1

]
. (31)

Meanwhile, a triangular matrix is yielded as

ΩV +1H̃V +1 =

RV rV +1

0 rV +1,V +1

0 0

 , (32)

where rV +1,V +1 =
√
ρ2 + σ2.

Then given the QR decomposition, the minimization prob-
lem can be solved by the transform that

‖H̃V pV − βe1‖ = ‖ΩV (H̃V pV − βe1)‖

= ‖R̃V pV − βΩe1‖.
(33)

Afterwards, using vector g̃V to denote βΩe1 as

g̃V =

[
gV

γV

]
, (34)

where gV ∈ RV and γV ∈ R.
Finally, norm ‖H̃V pV − βe1‖ can be denoted by

‖H̃V pV − βe1‖ = ‖R̃V pV − βΩV e1‖

=

∥∥∥∥ [RV

0

]
pV −

[
gV

γV

] ∥∥∥∥. (35)

So vector p that minimizes the norm is

pV = R−1
V gV , (36)

where vector gV can be updated easily and the minimization
problem can be solved.
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