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Abstract—Flexibility is one mandatory aspect of channel coding
in modern wireless communication systems. Among other things,
the channel decoder has to support several code lengths and code
rates. This need for flexibility applies to polar codes that are
considered for control channels in the future 5G standard. This
paper presents a new generic and flexible implementation of a
software Successive Cancellation List (SCL) decoder. A large
set of parameters can be fine-tuned dynamically without re-
compiling the software source code: the code length, the code
rate, the frozen bits set, the puncturing patterns, the cyclic
redundancy check, the list size, the type of decoding algo-
rithm, the tree-pruning strategy and the data quantization. This
generic and flexible SCL decoder enables to explore tradeoffs
between throughput, latency and decoding performance. Several
optimizations are proposed to achieve a competitive decoding
speed despite the constraints induced by the genericity and
the flexibility. The resulting polar list decoder is about 4 times
faster than a generic software decoder and only 2 times slower
than a non-flexible unrolled decoder. Thanks to the flexibility
of the decoder, the fully adaptive SCL algorithm can be easily
implemented and achieves higher throughput than any other
similar decoder in the literature (up to 425 Mb/s on a single
processor core for N = 2048 and K = 1723 at 4.5 dB).
Index Terms—Polar Codes, Adaptive Successive Cancellation
List decoder, Software Implementation, 5G Standard, Generic
Decoder, Flexible Decoder.

I. INTRODUCTION

Polar codes [1] are the first provably capacity achieving chan-
nel codes, for an infinite code length. The decoding perfor-
mance of the original Successive Cancellation (SC) decoding
algorithm is however not satisfactory for short polar codes.
The Successive Cancellation List (SCL) decoding algorithm
has been proposed in [2] to counter this fact along with
the concatenation of a Cyclic Redundancy Check (CRC).
The decoding performance of SCL decoding is such that
polar codes is included in the fifth generation (5G) mobile
communications standard [3].
Cloud radio access network (Cloud-RAN) is foreseen by both
academic [4], [5] and industrial [6], [7] actors as one of the
key technologies of the 5G standard. In the Cloud-RAN the
virtualization of the physical layer (PHY) would allow for deep
cooperative multipoint processing and computational diversity
[4]. PHY-layer cooperation enables interference mitigation,
while computational diversity lets the network balance the
computational load accross multiple users. But the virtualiza-
tion of the FEC decoder is a challenge as it is one of the most
computationally intensive tasks of the signal processing chain
in a Cloud-RAN context [8], [9]. Therefore, efficient, flexible

and parallel software implementations of FEC decoders are
needed to enable some of the expected features of Cloud-RAN.
To date, the fastest software implementations of SCL polar
decoders have been proposed in [10]. The high decoding speed
is achieved at the price of flexibility, because the software
decoder is only dedicated to a specific polar code. In a wireless
communication context, the source code of this fast software
polar decoder would have to be recompiled every time the
Modulation and Coding Scheme (MCS) changes, which may
happen every millisecond.
In this work, we propose a software SCL polar decoder able
to switch between different channel coding contexts (block
length, code rate, frozen bits sets, puncturing patterns and
CRC code). This property is denoted as genericity. Moreover,
the proposed decoder supports different list-based decoding
algorithms, several list sizes (L), quantization formats and tree-
pruning techniques during a real time execution. Again, this
is done dynamically without having to recompile the software
description. We denote this feature as flexibility. The genericity
and the flexibility of the decoder are achieved without sacri-
ficing the decoding throughput and latency thanks to several
implementation optimizations. Actually, the proposed software
SCL decoder is only 2 times slower than a polar code specific
decoder [10] and 4 times faster than a generic decoder [11].
Unlike these fast decoders, the proposed decoder supports a
fully adaptive version of SCL. It reaches 425 Mb/s on a single
processor core for N = 2048 and K = 1723 at 4.5 dB.
The genericity of our decoder makes it compliant with a wire-
less communication context: one can change the polar code pa-
rameters dynamically. Thanks to the decoder flexibility, some
new tradeoffs between throughput and error rate performance
are now possible. Finally, besides the genericity/flexibility-
driven improvements, some specific optimizations were im-
plemented in order to match the state-of-the-art throughputs
of software SCL decoders. Among other optimizations, a new
sorting technique is applied to different parts of the algorithm
which is faster than any other according to our experimenta-
tions. New methods to speed up the CRC processing are also
applied. The polar functions library described in [12], [13] is
used in order to benefit from a portable implementation of
SIMD instructions.
The rest of the paper is organized as follows: Section II
describes the SCL decoding algorithm and the improved
versions. The genericity and the flexibility of the proposed
decoder are highlighted in Section III. Section IV details the
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8 (LLR, ŝ)
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Fig. 1. Full SC decoding tree (N = 16).

speed-oriented optimizations. Finally, Section V provides the
throughput and latency performance.

II. POLAR CODES

In this section, we first present the polar encoding process.
Then the SC and SC-List based decoding algorithms are
reviewed. Finally we discuss the tradeoffs between speed and
decoding performance of different decoding algorithms.

A. Polar Encoding Process

In the polar encoding process, an information sequence b of
length K is transformed into a codeword x of length N . The
first step is to build a vector u in which the information bits
b are mapped on a subset uA where A ⊂ {0, ..., N − 1}.
The remaining bits uAc = (ai : i 6∈ A) called frozen bits
are usually set to zero. The selection of the frozen bits is
critical for the effectiveness of the polar codes. Two of the
main techniques to date for constructing polar codes are based
on the Density Evolution approach [14] and on the Gaussian
Approximation [15]. These techniques sort the polar channels
according to their reliability in order to choose the frozen bits
set for a given code length. Then, an intermediate vector u′

is generated thanks to an encoding matrix1: u′ = uF⊗n.
Finally the bits in the subset u′

Ac are set to zero and the
output codeword is x = u′F⊗n. This encoding method
is called systematic because the information sequence b is
present in the codeword (xA = b). In this paper, systematic
encoding schemes are considered. A CRC of length c may be
concatenated to the information sequence b in order to improve
the decoding performance of SCL decoding algorithms. In this
case, |A| = K + c and the CRC is included in uA. In this
paper, the code rate is defined as R = K/N and the c bits of
the CRC are not considered as information bits. For instance,
a polar code whose block length is N = 2048 and code rate

1F⊗1 =

[
1 0
1 1

]
and ∀n > 1, F⊗n =

[
F⊗n−1 0n−1

F⊗n−1 F⊗n−1

]
, where

n = log2(N), N is the codeword length, and 0n is a 2n-by-2n matrix of
zeros.

is R = 1/2 contains 1024 informations bits. Such a code is
denoted as (2048,1024).

B. Polar Decoding Algorithms

1) SC decoding algorithm: The SC decoding process can be
seen as the pre-order traversal of a binary tree as shown in
Figure 1. The tree contains log2N + 1 layers. Each layer
contains 2d nodes, where d is the depth of the layer in the
tree. Each node contains a set of 2n−d Log-Likelihood Ratios
(LLRs) λ and partial sums ŝ. The partial sums correspond to
the propagation towards the top of the tree of hard decisions
made in the update paths() function. As shown in Figure 1,
LLRs, which take real values, and partial sums, which take
binary values, are the two types of data contained in the
decoding tree, and three functions, f , g and h are necessary
for updating the nodes: f(λa, λb) = sign(λa.λb).min(|λa|, |λb|)

g(λa, λb, ŝa) = (1− 2ŝa)λa + λb
h(ŝa, ŝb) = (ŝa ⊕ ŝb, ŝb)

In comparison with the SCL algorithm and its derivatives,
the computational complexity of the SC algorithm is low:
O(N log2N). Therefore, both software [16] and hardware
[17] implementations achieve multi-Gb/s throughputs with low
latencies. The drawback of the SC decoding algorithm is its
decoding performance especially for short polar codes. This
is an issue for the future 5G wireless standard in which polar
codes are targeted for control channels, with code lengths
shorter than 2048 [3].

Algorithm 1: SCL decoding algorithm
Data: λ is a 2D buffer ([L][2N ]) to store the LLRs.
Data: ŝ is a 2D buffer ([L][N ]) to store the bits.

1 Function SCL decode (N, oλ, oŝ)
2 N 1

2
= N/2

3 if N > 1 then // not a leaf node
4 for p = 0 to L− 1 do // loop over the paths
5 for i = 0 to N 1

2
− 1 do // apply the f function

6 λ[p][oλ+N+i] = f(λ[p][oλ+i], λ[p][oλ+N 1
2
+i])

7 SCL decode (N 1
2
, oλ +N, oŝ)

8 for p = 0 to L− 1 do
9 for i = 0 to N 1

2
− 1 do // apply the g function

10 λ[p][oλ +N + i] =
g(λ[p][oλ + i], λ[p][oλ +N 1

2
+ i], ŝ[p][oŝ + i])

11 SCL decode (N 1
2
, oλ +N, oŝ +N 1

2
)

12 for p = 0 to L− 1 do
13 for i = 0 to N 1

2
− 1 do // update the partial sums

14 ŝ[p][oŝ + i] = h(ŝ[p][oŝ + i], ŝ[p][oŝ +N 1
2
+ i])

15 else // a leaf node
16 update paths () // update, create and delete paths

17 SCL decode (N, 0, 0) // launch the decoder
18 select best path ()

2) SCL decoding algorithm: The SCL algorithm is summa-
rized in Algorithm 1. Unlike the SC algorithm, the SCL de-



coder builds a list of candidate codewords along the decoding.
At each call of the update paths() sub-routine (Alg. 1, l.16),
2L candidates are generated. A path metric is then evaluated
to keep only the L best candidates among the 2L paths. The
path metrics are calculated as in [18]. At the end of the
decoding process, the candidate codeword with the best path
metric is selected in the select best path() sub-routine (Alg. 1,
l.18). The decoding complexity of the SCL algorithm grows
as O(LN log2N). This linear increase in complexity with L
leads to significant improvements in BER/FER performances,
especially for small code lengths.
3) Simplified SC and SCL decoding algorithms: All afore-
mentioned polar decoding algorithms have in common that
they can be seen as a pre-order tree traversal algorithm. In [19],
a tree pruning technique called the Simplified SC (SSC) was
applied to SC decoding. An improved version was proposed
in [17]. This technique relies on the fact that, depending on
the frozen bits location in the leaves of the tree, the definition
of dedicated nodes enables to prune the decoding tree: Rate-
0 nodes (R0) correspond to a sub-tree whose all leaves are
frozen bits, Rate-1 nodes (R1) correspond to a sub-tree in
which all leaves are information bits, REPetition (REP) and
Single Parity Check (SPC) nodes correspond to repetition and
SPC codes sub-trees. These special nodes, originally defined
for SC decoding, can be employed in the case of SCL decoding
as long as some modifications are made in the path metric
calculation [10]. This tree-pruned version of the algorithm is
called Simplified SCL (SSCL). The tree pruning technique can
drastically reduce the amount of computation in the decoding
process. Moreover, it increases the available parallelism by
replacing small nodes by larger ones. As will be discussed
in Section III, the tree pruning may have a small impact on
decoding performance.
4) CRC concatenation scheme: The authors in [2] observed
that when a decoding error occurs, the right codeword is
often in the final list, but not with the best path metric.
They proposed to concatenate a CRC to the codeword in
order to discriminate the candidate codewords at the final
stage of the SCL decoding. Indeed, this technique drastically
improves the FER performance of the decoder. We denote this
algorithm CA-SCL and its simplified version CA-SSCL. In
terms of computational complexity, the overhead consists in
the computation of L CRC at the end of each decoding.
5) Adaptive SCL decoding algorithm: The presence of the
CRC can be further used to reduce the decoding time by grad-
ually increasing L. This variation of SCL is called Adaptive
SCL (A-SCL) [20]. The first step of the A-SCL algorithm is
to decode the received frame with the SC algorithm. Then, the
decoded polar codeword is checked with a CRC. If the CRC
is not valid, the SCL algorithm is applied with L = 2. If no
candidate in the list satisfies the CRC, L is gradually doubled
until it reaches the value Lmax. In this paper, we call this
version of the A-SCL decoding the Fully Adaptive SCL (FA-
SCL) as opposed to the Partially Adaptive SCL (PA-SCL),
in which the L value is not gradually doubled but directly
increased from 1 (SC) to Lmax. The simplified versions of

TABLE I
THROUGHPUT AND LATENCY COMPARISON OF POLAR DECODING

ALGORITHMS.

Decoding BER & FER Throughput Max. Latency
Algorithm Performances (T ) (Lworst)

SC poor medium medium
SSC poor high low
SCL good low high

SSCL good low medium
CA-SSCL very good low medium
PA-SSCL very good high medium
FA-SSCL very good high high

these algorithms are denoted PA-SSCL and FA-SSCL. In
order to simplify the algorithmic range, in the remainder of
the paper, only the simplified versions are considered. The
use of either FA-SSCL or PA-SSCL algorithmic improvement
introduces no BER or FER performance degradation as long as
the CRC length is adapted to the polar code length. If the CRC
length is too short, the decoding performance may be degraded
because of false detections. These adaptive versions of SSCL
can achieve higher throughputs. Indeed, a large proportion of
frames can be decoded with a single SC decoding. This is
especially true when the SNR is high. This will be further
discussed in Section III.

C. Algorithmic Comparison

In order to better distinguish all the algorithmic variations,
we compare their main features in Table I. Each algorithm is
characterized in terms of decoding performance, throughput,
and worst case latency for a software implementation. The
non-simplified versions of the adaptive SCL algorithms are
not included in the Table for readability.
The SC and especially the SSC algorithms achieve very
high throughput and low latency with poor BER and FER
performances. The SCL algorithm improves the decoding per-
formance compared to the SC algorithm, but its computational
complexity leads to an increased latency and a lower through-
put. The SSCL algorithm improves the decoding throughput
and latency without any impact in terms of BER and FER
performances, as long as the tree pruning is not too deep,
as will be discussed in Section III. Therefore, tree pruning is
applied to all the following algorithms, namely CA-SSCL, FA-
SSCL and PA-SSCL. By applying CRC to the SCL algorithm,
one can achieve better BER and FER performances at the
cost of computational complexity overhead. The Adaptive
SCL algorithms reduce the decoding time with no impact on
BER and FER performances. Furthermore, a tradeoff between
throughput and worst case latency is possible with the use of
either PA-SSCL or FA-SSCL decoding algorithms.
To the best of our knowledge, SC and CA-SCL decoding
performances have never been investigated in the literature for
large code lengths (N > 214). This is probably due to the long
simulation durations. In this work the AFF3CT2 tool enables
multi-threaded and multi-nodes simulations. All the presented

2AFF3CT is an Open-source software (MIT license) for fast forward error
correction simulations, see http://aff3ct.github.io
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simulations use the Monte Carlo method with a Binary Phase-
Shift Keying (BPSK) modulation. The communication channel
is an Additive White Gaussian Noise (AWGN) channel based
on the Mersenne Twister pseudo-random number generator
(MT19937) [21] and the Box-Muller transform [22]. Figure 2
compares the BER/FER performances of CA-SCL with SC
decoding for a large range of code lengths. As expected, it
appears that the coding gain brought by the SCL algorithm
decreases for larger N values. In the case of N = 216, the
improvement caused by the use of the CA-SCL algorithm with
L = 32 and a 32-bit GZip CRC (0x04C11DB7 polynomial)
instead of SC is about 0.75 dB compared to 1.2 dB with a
polar code of size N = 212. For larger polar codes, N = 220,
the gain is reduced to 0.5 dB, even with a list depth of 128
that is very costly in terms of computational complexity.
The tradeoffs between speed and decoding performance show
some general trends. However, the efficiency of each decoding
algorithm is strongly dependent on the polar code length, code
rate, list depth and code construction. It is expected that the
best tradeoff is not always obtained with a single algorithm and
parameter set combination. It is consequently highly relevant
to use a generic and flexible decoder, that supports all variants
of the decoding algorithms. Thus, it is possible to switch from
one to another as shown in the following section.

III. GENERIC AND FLEXIBLE POLAR DECODER

The main contribution of this work lies in the flexibility and
the genericity of the proposed software decoder. These terms
need to be clearly defined in order to circumvent possible
ambiguity. In the remainder of the paper, the genericity of the
decoder concerns all the parameters that define the supported
polar code such as the codeword length, the code rate, the
frozen bits set, the puncturing patterns and the concatenated
CRC. These parameters are imposed by the telecommunica-
tion standard or the communication context. In the wireless
communications context, these are constantly adapted by AMC
methods [23]. In this work, a decoder is considered generic if it
is able to support any combination of these parameters that can
be changed during a real time execution. On the other hand, the

flexibility of a decoder includes all the customizations that can
be applied to the decoding algorithm for a given polar code:
variant of the decoding algorithm, data representation format,
list size L, tree pruning strategy, ... These customizations are
not enforced by a standard. The flexibility gives some degrees
of freedom to the decoder in order to find the best tradeoff
between decoding performance, throughput or latency for a
given polar code.

A. Genericity

In the context of wireless communications, the standards
enforce several different code lengths N that have to be
supported to share bandwidth between different users. This is
also the case for the code rate R that needs to be adapted to
the quality of the transmission channel. Therefore, a practical
implementation should be adapted to both N and R in real-
time in order to limit latency.
A polar code is completely defined by N and the frozen bits
set uAc . Several methods exist to generate some ”good” sets
of frozen bits [14], [15]. The code rate R depends on the size
of uAc . In their original form, polar code lengths are only
powers of two. The puncturing and shortening techniques in
[24]–[26] enable to construct polar codes of any length at the
cost of slightly degraded decoding performance. The coding
scheme can be completed with the specification of a CRC.
In [10], the unrolling method is used: a specific description
of the decoder has to be generated for a specific polar code
parameter set of N , K, R, frozen bits set, puncturing pattern,
CRC. This approach leads to very fast software decoders at
the price of the genericity, since a new source code should
be generated and compiled every time the modulation and
coding scheme (MCS) changes. This method is not adapted to
wireless communication standards, in which these parameters
have to be adapted not only over time, but also for the different
users.
The proposed decoder does not use the unrolling method and is
completely generic regarding the code dimension K, the code
length N , the frozen bits set uAc and the puncturing patterns.
All of them are dynamic parameters of the decoder and can
be defined in input files. All CRC listed in [27] are available
along with the possibility to define others. It is shown in [28]
that custom CRCs for polar codes can have a very good impact
on the decoding performance.
Relying on an unique software description also implies that
the tree pruning technique also has to be dynamically defined.
Indeed, this technique depends on the frozen bits set uAc .
Not sacrificing throughput or latency while maintaining the
genericity imposed by wireless communication standards is at
the core of the proposed implementation. Flexibility in terms
of decoding algorithms, described in the following, along with
improvements presented in Section IV, is necessary to deal
with this challenge.

B. Flexibility

On one hand, the reason for the decoder genericity is the
compliance to the telecommunication standards. On the other
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hand, the flexibility of the decoder regroups several algo-
rithmic variations that are discussed in the following. These
variations allow several tradeoffs of multiple sorts, whatever
the standard. They are all included in a single source code.
In the proposed decoders the following parameters can be
changed dynamically without re-compilation: the list size L,
the tree pruning strategy, the quantization of the LLRs and
the different SCL variants. Each of these adjustments can be
applied to access to different tradeoffs between throughput,
latency, and error rate performance. As a consequence, one
can easily fine-tune the configuration of the software decoder
for any given polar code.
1) List size: As mentioned earlier, the list size L impacts both
speed and decoding performance. In Figure 3, the throughput
as well as BER and FER performances of the CA-SSCL
algorithm are shown for different L values. A (2048,1024)
polar code with a 32-bit CRC is considered. The computational
complexity increases linearly with L: the throughput is approx-
imately halved when L is doubled, except for the case of the
SC algorithm (L = 1) which is much faster. Indeed, there is no
overhead due to the management of different candidate paths
during the decoding. For L ≥ 4 and Eb/N0 = 2, the FER is
also approximately halved when the list size L is doubled.
2) Tree pruning strategy: A second degree of flexibility is
the customization of the SCL tree pruning. The authors in
[10], [19] defined dedicated nodes to prune the decoding
tree and therefore to reduce the computational complexity. In
this proposed decoder, each dedicated node can be activated
separately. The ability to activate dedicated nodes at will is
useful in order to explore the contribution of each node type on
the throughput. Figure 4 shows the impact of the different tree
pruning optimizations on the CA-SSCL decoder throughput
depending on the code rate. The performance improvements
are cumulative. Coded throughput, in which the redundant
bits are taken in account, is shown instead of information
throughput, for which only information bits are considered
in order to illustrate the computational effort without the
influence of the fact that higher rate codes involve higher
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Fig. 4. Dedicated nodes impact on CA-SSCL. N = 2048 and L = 32.

information throughput.
Without pruning, the coded throughput decreases as the code
rate increases. Indeed, frozen bit leaf nodes are faster to
process than information bit leaf nodes, in which a threshold
detection is necessary. As there are more R0 and REP nodes
in low code rates, the tree pruning is more efficient in the case
of low code rates. The same explanation can be given for R1
nodes in high code rates. R1 node pruning is more efficient
than R0 node pruning on average. Indeed, a higher amount of
computations is saved in R1 nodes than in R0 nodes.
It has also been observed in [10] that when the SPC node
size is not limited to 4, the decoding performance may be
degraded. Consequently the size is limited to 4 in SPC4. In
SPC4+ nodes, there is no size limit. The two node types are
considered in Figure 4. Therefore, the depth at which dedicated
nodes are activated in the proposed decoder can be adjusted,
in order to offer a tradeoff between throughput and decoding
performance.
According to our experiments, the aforementioned statement
about performance degradation caused by SPC4+ nodes is
not always accurate depending on the code and decoder
parameters. The impact of switching on or off SPC4+ nodes
on decoding performance and throughput at a FER of 10−5

is detailed in Table II. It shows that SPC4+ nodes have only
a small effect on the decoding performance. With L = 8,

TABLE II
EFFECTS OF THE SPC4+ NODES ON THE CA-SSCL @ 10−5 FER

N = 256 N = 1024 N = 4096

L R
Eb/N0

loss
dB

Thr.
gain

%

Eb/N0

loss
dB

Thr.
gain

%

Eb/N0

loss
dB

Thr.
gain

%

8
1/3 0.15 09.7 0.03 12.6 0.02 09.5
1/2 0.09 08.6 0.04 16.4 0.07 20.2
2/3 0.03 20.5 0.04 11.3 0.09 14.3

32
1/3 0.52 11.8 0.19 12.9 0.22 12.5
1/2 0.30 10.3 0.24 16.5 0.26 19.9
2/3 0.27 22.6 0.22 15.2 0.25 17.1
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an SNR degradation lower than 0.1 dB is observed, except
for one particular configuration Throughput improvements of
8 to 20 percents are observed. If L = 32, the SNR losses
are more substantial (up to 0.5 dB), whereas throughput
improvements are approximately the same. Besides this ob-
servation, Table II shows how the proposed decoder flexibility
in the AFF3CT environment enables to optimize easily the
decoder tree pruning, both for software implementations or
for hardware implementations in which tree pruning can also
be applied [29].

3) LLR Quantization: Another important parameter in both
software and hardware implementations is the quantization
of data in the decoder. More specifically, the representations
of LLRs and partial sums in the decoder have an impact
on decoding performance. Quantized implementations of the
SC algorithm have already been proposed in [30] but to the
best of our knowledge, the proposed decoder is the first SCL
software implementation that can benefit from the 8-bit and
16-bit fixed-point representations of LLRs and internal path
metrics. In the 8-bit mode LLRs and path metrics are saturated
between −127 and +127 after each operation. Moreover, to
avoid overflows, the path metrics are normalized after each
update paths() call (cf. Alg. 1) by subtracting the smallest
metric to each one of them. Figure 5a shows the BER and FER
performances of the CA-SSCL decoder for 32-bit floating-
point, 16-bit and 8-bit fixed-point representations. One can

TABLE III
THROUGHPUT AND LATENCY COMPARISONS BETWEEN FLOATING-POINT

(32-BIT) AND FIXED-POINT (16-BIT AND 8-BIT) ADAPTIVE SSCL
DECODERS. CODE (2048,1723), L = 32 AND 32-BIT CRC (GZIP).

Decoder Prec. Lworst
3.5 dB 4.0 dB 4.5 dB

Lavg T i Lavg T i Lavg T i

PA-SSCL
32-bit 635 232.3 7.6 41.7 42.1 7.4 237.6
16-bit 622 219.6 8.0 40.1 43.8 6.6 267.5
8-bit 651 232.4 7.6 41.2 42.6 6.5 268.3

FA-SSCL
32-bit 1201 67.2 26.1 8.5 207.8 5.1 345.5
16-bit 1198 68.7 25.6 7.7 225.7 4.3 408.7
8-bit 1259 71.8 24.4 7.7 227.3 4.1 425.9
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Fig. 6. Frame Error Rate (FER) performance and throughput of the Fully
and Partially Adaptive SSCL decoders (FA and PA). Code (2048,1723) and
32-bit CRC (GZip). 32-bit floating-point representation.

observe that the REP nodes degrade the decoding performance
in a 8-bit representation because of accumulation (red triangles
curve). Indeed, it is necessary to add all the LLRs of a
REP node together in order to process it, which may lead
to an overflow in the case of fixed-point representation. It
can happen when the size of the repetition nodes is not
limited (REP2+). However, thhe size limitation of the repetition
nodes to 8 (REP8-) fixes this issue. In Table III, maximum
latency (Lworst in µs), average latency (Lavg in µs) and
information throughput (Ti in Mb/s) are given. Note that
in 8-bit configuration only the REP8- nodes are used. The
fixed-point implementation reduces, on average, the latency.
In the high SNR region, the frame errors are less frequent.
Therefore, the SCL algorithm is less necessary than in low
SNR regions for Adaptive SCL algorithms. As the gain of
fixed-point implementation benefits more to the SC algorithm
than to the SCL algorithm, the throughput is higher in high
SNR regions. For instance, up to 425.9 Mb/s is achieved
in 8-bit representation with the FA-SSCL decoder. Note that
the improvements described in Section IV are applied to the
decoders that are given in Table III.

4) Supporting different variants of the decoding algorithms:
Besides the L values, the tree pruning and quantization as-
pects, the proposed software polar decoder supports different
variants of the SCL algorithm: CA-SSCL, PA-SSCL, FA-
SSCL.
As shown in [10], the adaptive version of the SCL algorithm
yields significant speedups, specially for high SNR. The
original adaptive SCL described in [20], denoted as Fully
Adaptive SCL (FA-SSCL) in this paper, gradually doubles
the list depth L of the SCL decoder when the CRC is not
valid for any of the generated codewords at a given stage
until the value Lmax. By contrast, the adaptive decoding
algorithm implemented in [10], called in this paper Partially
Adaptive SCL (PA-SSCL), directly increases the list depth
from 1 (SC) to Lmax. In Figure 6, the two versions (FA-
SSCL and PA-SSCL) are compared on a (2048,1723) polar



code and 32-bit CRC (GZip). The LLRs values are based on
a 32-bit floating point representation. Note that as the FER
performance of PA-SSCL and FA-SSCL are exactly the same,
the related error performance plots completely overlap. The
throughput of the FA-SSCL algorithm is higher than that of the
PA-SSCL algorithm for some SNR values, depending on the
code parameters. Considering typical FER values for wireless
communication standards (10−3 to 10−5), in the case of a
(2048,1723) polar code, the throughput of FA-SSCL is double
that of PA-SSCL with L = 8, while it is multiplied by a factor
of 7 with L = 32. The drawback of FA-SSCL is that although
the average latency decreases, the worst case latency increases.
The adaptive versions of the algorithm achieve better through-
puts, but CA-SCL may also be chosen depending on the
CRC. One may observe in Figure 5b that an adaptive decoder
dedicated to an 8-bit CRC with a (2048,1723) polar code and
L = 32 leads to a loss of 0.5 dB for a FER of 10−5 compared
to its non adaptive counterpart.
Both polar code genericity and decoding algorithm flexibil-
ity are helpful to support the recommendations of wireless
communications in an SDR or cloud RAN context. The code
and decoder parameters can be dynamically changed in the
proposed decoder, while maintaining competitive throughput
and latency. The following section introduces algorithmic
and implementation improvements applied in the proposed
decoders to keep a low decoding time.

IV. SOFTWARE IMPLEMENTATION OPTIMIZATIONS

The genericity and flexibility of the formerly described de-
coder prevent from using some optimizations. Unrolling the
description as in [10] is not possible at runtime, although
code generation could be used to produce an unrolled version
of any decoder as in [12]. Moreover, in the case of large
code lengths, the unrolling strategy can generate very large
compiled binary files. This can cause instruction cache misses
that would dramatically impact the decoder throughput. As
this unrolling method is not applied, some implementation
improvements are necessary in order to be competitive with
specific decoders of the literature. The software library for
polar codes from [12], [13] enables to benefit from the SIMD
instructions for various target architectures. Optimizations of
CRC checking benefit to both the non-adaptive and adaptive
versions of the CA-SCL algorithms. The new sorting technique
presented in Section IV-C can be applied to each variation
of the SCL algorithm. Finally, an efficient implementation
of the partial sums memory management is proposed. It is
particularly effective for short polar codes.

A. Polar Application Programming Interface

Reducing the decoding time with SIMD instructions is a
classical technique in former software polar decoder imple-
mentations. The proposed list decoders are based on specific
building blocks included from the Polar API [12], [13]. These
blocks are fast and optimized implementations of the f ,
g, h (and their variants) polar intrinsic functions. Figure 7
details the SIMD implementation of these functions. This

1 class API_polar
2 {
3 template <typename R>
4 mipp::Reg<R> f_simd(const mipp::Reg<R> &la,
5 const mipp::Reg<R> &lb)
6 {
7 auto abs_la = mipp::abs(la);
8 auto abs_lb = mipp::abs(lb);
9 auto abs_min = mipp::min(abs_la, abs_lb);

10 auto sign = mipp::sign(la, lb);
11 auto lc = mipp::neg(abs_min, sign);
12
13 return lc;
14 }
15
16 template <typename B, typename R>
17 mipp::Reg<R> g_simd(const mipp::Reg<R> &la,
18 const mipp::Reg<R> &lb,
19 const mipp::Reg<B> &sa)
20 {
21 auto neg_la = mipp::neg(la, sa);
22 auto lc = neg_la + lb;
23
24 return lc;
25 }
26
27 template <typename B>
28 mipp::Reg<B> h_simd(const mipp::Reg<B>& sa,
29 const mipp::Reg<B>& sb)
30 {
31 return sa ˆ sb;
32 }
33 };

Fig. 7. C++ SIMD implementation of the f , g and h functions.

implementation is based on MIPP, a SIMD wrapper for the
intrinsic functions (assembly code), and the template meta-
programming technique. Consequently, the description is clear,
portable, multi-format (32-bit floating-point, 16-bit and 8-bit
fixed-points) and as fast as an architecture specific code. The
mipp::Reg<B> and mipp::Reg<R> types correspond to
SIMD registers. B and R define the type of the elements that
are contained in this register. B for bit could be int, short
or char. R for real could be float, short or char. In
Figure 7, each operation is made on multiple elements at the
same time. For instance, line 22, the addition between all the
elements of the neg_la and lb registers is executed in one
CPU cycle.
In the context of software decoders, there are two well-known
strategies to exploit SIMD instructions: use the elements of a
register to compute 1 )many frames in parallel (INTER frame)
or 2) multiple elements from a single frame (INTRA frame).
In this paper, only the INTRA frame strategy is considered.
The advantage of this strategy is the latency reduction by
comparison to the INTER frame strategy. However, due to
the nature of the polar codes, there are sometimes not enough
elements to fill the SIMD registers completely. This is es-
pecially true in the nodes near the leaves. For this reason,
SIMD instructions in the lower layers of the tree do not
bring any speedup. In this context, the building blocks of
the Polar API automatically switch from SIMD to sequential
implementations. In the case of the CA-SSCL algorithm, using
SIMD instructions for decoding a (2048, 1723) polar code



leads to an improvement of 20% of the decoding throughput
on average for different values of the list depth L.

B. Improving Cyclic Redundancy Checking

By profiling the Adaptive SCL decoder, one may observe that
a significant amount of time is spent to process the cyclic
redundancy checks. Its computational complexity is O(LN )
versus the computational complexity of the SCL decoding,
O(LN logN ). The first is not negligible compared to the
second.
In the adaptive decoder, the CRC verification is performed a
first time after the SC decoding. In the following, we show
how to reduce the computational complexity of these CRC
verifications.
First, an efficient CRC checking code has been implemented.
Whenever the decoder needs to check the CRC, the bits are
packed and then computed 32 by 32. In order to further
speed up the implementation, a lookup table used to store
pre-computed CRC sub-sequences, and thus reduce the com-
putational complexity.
After a regular SC decoding, a decision vector of size N is pro-
duced. Then, the K information bits must be extracted to apply
cyclic redundancy check. The profiling of our decoder descrip-
tion shows that this extraction takes a significant amount of
time compared to the check operation itself. Consequently, a
specific extraction function was implemented. This function
takes advantage of the leaf node type knowledge to perform
efficient multi-element copies.
Concerning SCL decoding, it is possible to sort the candidates
according to their respective metrics and then to check the
CRC of each candidate from the best to the worst. Once a
candidate with a valid CRC is found, it is chosen as the
decision. This method is strictly equivalent to do the cyclic
redundancy check of each candidate and then to select the one
with the best metric. With the adopted order, decoding time is
saved by reducing the average number of checked candidates.

C. LLR and Metric Sorting

Metric sorting is involved in the aforementioned path selection
step, but also in the update paths() sub-routine (Alg. 1,
L16) and consequently in each leaf. Sorting the LLRs is
also necessary in R1 and SPC nodes. Because of a lack of
information about the sorting technique presented in [10], its
reproduction is not possible. In the following of the paragraph
the sorting algorithm used in the SCL decoder is described.
In R1 nodes, a Chase-2 [31] algorithm is applied. The two
maximum absolute values of the LLRs have to be identified.
The way to do the minimum number of comparisons to
identify the 2 largest of n ≥ 2 elements was originally
described by Schreier in [32] and reported in [33]. The lower
stages of this algorithm can be parallelized thanks to SIMD
instructions in the way described in [34]. According to our
experimentations, Schreier’s algorithm is the most efficient
compared to parallelized Batcher’s merge exchange, partial
quick-sort or heap-sort implemented in the C++ standard
library in the case of R1 nodes. At the end, we chose not
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Fig. 8. Information throughput of the SSCL decoder depending on the
codeword size (N ) and the partial sums management. R = 1/2, L = 8.

to apply the SIMD implementation of the Schreier’s algorithm
because: 1) the speedup was negligible, 2) in 8-bit fixed-point,
only N ≤ 256 codewords can be considered.
Concerning path metrics, partial quick-sort appeared to yield
no gains in terms of throughput by comparison with the algo-
rithm in [32], neither did heap-sort or parallelized Batcher’s
merge exchange. For a matter of consistency, only Schreier’s
algorithm is used in the proposed decoder, for both LLR
sorting in R1 and SPC nodes and for path metrics sorting.
The sorting of path metrics is applied to choose the paths to
be removed, kept or duplicated.

D. Partial Sum Memory Management

An SCL decoder can be seen as L replications of an SC
decoder. The first possible memory layout is the one given
in Figure 1. In this layout, the partial sums ŝ of each node is
stored in a dedicated array. Therefore, a memory of size 2N−1
bits is necessary in the SC decoder, or L × (2N − 1) bits in
the SCL decoder. This memory layout is described in [2] and
applied in previous software implementations [10], [11], [35].
A possible improvement is to change the memory layout to
reduce its footprint. Due to the order of operations in both SC
and SCL algorithms, the partial sums on a given layer are only
used once by the h function and can then be overwritten. Thus,
a dedicated memory allocation is not necessary at each layer
of the tree. The memory can be shared between the stages.
Therefore the memory footprint can be reduced from 2N − 1
to N in the SC decoder as shown in [36]. A reduction from
L× (2N − 1) to LN can be obtained in the SCL decoder.
In the case of the SCL algorithm, L paths have to be assigned
to L partial sum memory arrays. In [2], this assignment is
made with pointers. The advantage of pointers is that when a
path is duplicated, in the update paths() sub-routine of Alg. 1,
the partial sums are not copied. Actually, they can be shared
between paths thanks to the use of pointers. This method limits
the number of memory transactions. Unfortunately, it is not
possible to take advantage of the memory space reduction: the
partial sums have to be stored on L× (2N − 1) bits. There is
an alternative to this mechanism. If a logical path is statically



assigned to a memory array, no pointers are necessary at the
cost that partial sums must be copied when a path is duplicated
(only LN bits are required). This method is called SSCLcpy

whereas the former is called SSCLptr.
Our experiments have proved that the overhead of handling
pointers plus the extra memory space requirement cause the
SSCLcpy to be more efficient than the SSCLptr for short and
medium code lengths, as shown in Figure 8. The 32-bit version
uses floating-point LLRs, whereas 16-bit and 8-bit versions
are in fixed-point. Notice that in this work, each bit of the
partial sums is stored on an 8-bit, 16-bit or 32-bit number
accordingly to the LLR data type. The code rate R is equal
to 1/2. The throughput of the SSCLcpy version is higher for
N ≤ 8192 whereas the SSCLptr version is more efficient for
higher values of N . Although it does not appear in Figure 8,
experiments showed that the lower L is, the more efficient
SSCLcpy is compared to SSCLptr. Figure 8 also illustrates
the impact of the representation of partial sums. For very high
values of N , 8-bit fixed point representation takes advantage
of fewer cache misses. According to the results presented in
Figure 2, as the decoding performance improvements of the
SCL algorithm are not very significant compared to the SC
algorithm for long polar codes, SSCLcpy is the appropriate
solution in most practical cases.
In our decoder description, LLRs are managed with pointers,
as it is the case in other software implementations of the
literature [10], [11], [35]. We tried to remove the pointer
handling as for the partial sums, but it appeared that it was
not beneficial in any use case.

V. EXPERIMENTS AND MEASUREMENTS

Throughput and latency measurements are detailed in this
section. The proposed decoder implementation is compared
with the previous software decoders. Despite the additional
levels of genericity and flexibility, the proposed implementa-
tion is very competitive with its counterparts. Note that all the
results presented in the following can be reproduced with the
AFF3CT tool.
During our investigations, all the throughput and latency
measurements have been obtained on a single core of an
Intel i5-6600K CPU (Skylake architecture with AVX2 SIMD)
with a base clock frequency of 3.6 GHz and a maximum
turbo frequency of 3.9 GHz. The description has been com-
piled on Linux with the C++ GNU compiler (version 5.4.0)
and with the following options: -Ofast -march=native
-funroll-loops.

A. Fully Adaptive SCL

Being able to easily change the list size of the SCL decoders
enables the use of the FA-SSCL algorithm. With an unrolled
decoder as proposed in [10], the fully adaptive decoder would
imply to generate a fully unrolled decoder for each value
of the list depth. In our work, only one source code gives
the designer the possibility to run each variation of the SCL
decoders. FA-SSCL algorithm is the key to achieve the highest
possible throughput. As shown in Table III, with an 8-bit fixed

TABLE IV
THROUGHPUT AND LATENCY COMPARISON WITH STATE-OF-THE-ART SCL

DECODERS. 32-BIT FLOATING-POINT REPRESENTATION.
CODE (2048,1723), L = 32, 32-BIT CRC.

Target Decoder Lworst T i (Mb/s)
(µs) 3.5 dB 4.0 dB 4.5 dB

i7-4790K CA-SCL [35] 1572 1.10 1.10 1.10

i7-2600
CA-SCL [11] 23000 0.07 0.07 0.07

CA-SSCL [11] 3300 0.52 0.52 0.52
PA-SSCL [11] ≈ 3300 0.9 4.90 54.0

i7-2600
CA-SCL [10] 2294 0.76 0.76 0.76

CA-SSCL [10] 433 4.0 4.0 4.0
PA-SSCL [10] ≈ 433 8.6 33.0 196.0

i7-2600

This CA-SCL 4819 0.37 0.37 0.37
This CA-SSCL 770 2.3 2.3 2.3
This PA-SSCL 847 5.5 31.1 168.4
This FA-SSCL 1602 19.4 149.0 244.3

i5-6600K

This CA-SCL 3635 0.48 0.48 0.48
This CA-SSCL 577 3.0 3.0 3.0
This PA-SSCL 635 7.6 42.1 237.6
This FA-SSCL 1201 26.1 207.8 345.5

point representation of the decoder inner values, the achieved
throughput in the case of the (2048,1723) polar code is about
425 Mb/s on the i5-6600K for an Eb/N0 value of 4.5 dB.
It corresponds to a FER of 5 × 10−8. This throughput is
almost 2 times higher than the throughput of the PA-SSCL
algorithm. The highest throughput increase from PA-SSCL
to FA-SSCL, of about 380%, is in the domain where the
FER is between 10−3 and 10−5. It is the targeted domain for
wireless communications like LTE or 5G. In these conditions,
the throughput of FA-SSCL algorithm is about 227 Mb/s
compared to 42 Mb/s for the PA-SSCL algorithm.
In Adaptive SCL algorithms, the worst case latency is the sum
of the latency of each triggered algorithm. In the case of PA-
SSCL with Lmax = 32, it is just the sum of the latency of
the SC algorithm, plus the latency of the SCL algorithm with
L = 32. In the case of the FA-SSCL algorithm, it is the sum of
the decoding latency of the SC algorithm and all the decoding
latencies of the SCL algorithm for L = 2, 4, 8, 16, 32. This is
the reason why the worst latency of the PA-SSCL algorithm is
lower while the average latency and consequently the average
throughput is better with the FA-SSCL algorithm.

B. Comparison With State-Of-The-Art SCL Decoders.

The throughput and latency of the proposed decoder compared
to other reported implementations are detailed in Table IV.
For all the decoders, all the available tree pruning optimiza-
tions are applied excluding the SPC4+ nodes because of the
performance degradation. Each decoder is based on a 32-bit
floating-point representation. The polar code parameters are
N = 2048, K = 1723 and the 32-bit GZip CRC is used. The
list size is L = 32.
The latency given in Table IV is the worst case latency
and the throughput is the average information throughput.
The first version, CA-SCL, is the implementation of the
CA-SCL algorithm without any tree pruning. As mentioned
before the throughput of the proposed CA-SSCL decoder (2.3
Mb/s) is only halved compared to the specific unrolled CA-
SSCL decoder described in [10] (4.0 Mb/s). The proposed



CA-SSCL decoder is approximately 4 times faster than the
generic implementation in [11] (0.52 Mb/s) and 2 times faster
than the CA-SCL implementation in [35] (1.1 Mb/s) thanks
to the implementation improvements detailed in Section IV.
Furthermore, the proposed decoder exhibits a much deeper
level of genericity and flexibility than the ones proposed in
[11], [35]. Indeed, the following features were not enabled: the
customization of the tree pruning, the 8-bit and 16-bit fixed-
point representations of the LLRs, the puncturing patterns and
the FA-SSCL algorithm.
When implemented on the same target (i7-2600), the proposed
PA-SSCL is competitive with the unrolled PA-SSCL in [10],
being only two times slower. This can be explained by
the improvements concerning the CRC that are described in
Section IV-B, especially the information bits extraction in the
SC decoder. Finally, as mentioned before, the throughput of
the proposed FA-SSCL significantly outperforms all the other
SCL decoders (up to 345.5 Mb/s at 4.5 dB in 32-bit floating-
point).

VI. CONCLUSION

The trend towards Cloud RAN networks in the context of mo-
bile communications and the upcoming 5G standard motivated
an investigation of the possibility of implementing generic and
flexible software polar decoders. Means of implementing such
flexible decoders are reported in this paper. A single source
code is necessary to address any code lengths, code rates,
frozen bits sets, puncturing patterns and cyclic redundancy
check polynomials.
This genericity is obtained without sacrificing the throughput
of the decoders, thanks to the possibility to adjust the decoding
algorithm and the possibility to apply multiple implementation
related and algorithmic optimizations. In fact, to the best of our
knowledge, the proposed adaptive SCL decoder is the fastest
to be found in the literature, with a throughput of 425 Mb/s
on a single core for N = 2048 and K = 1723 at 4.5 dB.
Being included in the open-source AFF3CT tool, all the results
presented in this paper can be easily reproduced. Moreover,
this tool can be used for polar codes exploration, which is of
interest for the definition of digital communication standards
and for practical implementations in an SDR environment.
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