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1 Introduction to International Forum
on Medical Imaging in Asia

Back to ten years ago, we invited some of the most experi-
enced authors in the field and published the Springer book
“Biomedical Imaging” [1], we did not foresee such a dramatic
change in the theoretical research and practical development.
We have since then witnessed the overwhelming activities in
both academia and industry, remarkably the biannual
International Forum on Medical Imaging in Asia (IFMIA).
Upon the success in IFMIA 2019 in Singapore, we believe it
is of value to provide the readers with a comprehensive cov-
erage on medical imaging, with a selection of both original
research and critical reviews in a Special Issue, thanks to the
agreement of the JSPS Editorial Office.

Therefore, this article is to briefly introduce technical ad-
vancements in all imaging modalities for molecular, cellular,
anatomical and functional imaging, with the case studies re-
ported by some leading groups in Asia. Research topics in-
clude imaging instrumentation, registration, reconstruction,
multimodality methods, noise filtering and image enhance-
ment, segmentation, classification and feature detection, mod-
el based imaging, as well as system development and acceler-
ation technologies.

2 Intelligent Signal Processing and Medical
Instrumentation

Oral lesions are conventionally diagnosed using white light
endoscopy and histopathology. In National Cancer Centre
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Singapore, a clinic protocol of virtual histology using an
in vivo cellular imaging and real-time processing system
(see Fig. 1) is reported by Cheong etc. [2], in which
photoactivation and miniaturized confocal image scanning
are utilized. In their experiments, fluorescence imaging of
the human and murine oral cavities was carried out using the
fluorescent dyes fluorescein sodium [3] and produced dis-
criminant image signals. Embedded computational intelli-
gence with real-time image processing, feature detection and
visualization is demonstrated. Nevertheless, main constraints
seem to be the memory limitation for FPGA implementation
of complex tissue image alignment and 3-dimensional
reconstruction.

In the optical image feature detection with optical interfer-
ometry, fringe projection is a commonly used technique, and
has brought a key issue, i.e. fringe pattern analysis [4], to the
researchers in the domain. Extracting phase distribution from
arbitrary phase-shifted fringe patterns is found useful in phase-
shifting interferometry. The advanced iterative algorithm
(AIA) and the windowed Fourier ridges and least squares
fitting (WFRLSF) is invented, but both of the signal process-
ing algorithms are sensitive to noise, which limits their appli-
cations to almost perfect fringe patterns. The windowed
Fourier filtering (WFF) algorithm is proposed by Qian etc.
from Nanyang Technological University (NTU) for both
pre-filtering and post-filtering to suppress the noise [5].
Their simulation results show that with the effective noise
suppression, the phase error is reduced to less than 0.1 rad.

For the optical medical instrumentation, design and
fabrication of fiber-axicons for in vivo and in vitro cel-
lular imaging and real-time processing system is often
the key to a high-resolution system. A direct-laser writ-
ing fabrication process for micro-axicons is reported by
Huang etc. from Zhejiang University (ZJU) [6]. A fiber-
axicon-generated Bessel beam is utilized to write on
UV-curable optical epoxy to form new axicons and
axicon arrays, with satisfactory apex angle and proxim-
ity of the writing axicons. The fabricated axicons are
capable of generating a quality Bessel beam with an
excellent focusing performance.
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Fig. 1 Instrumentation of an endomicroscopic imaging system [2].

In the quantitative image analysis and diagnostic applica-
tions in radiologic imaging, radiomics has emerged as a novel
framework which allows to extract a large number of quanti-
tative features from radiologic images and promises to im-
prove the characterization of lesions providing potentially
valuable information in the context of personalized medicine.
However, radiomic features are known to be affected by tech-
nical parameters and feature extraction methodology. Refer to
Fig. 2, a study by Jin et al. evaluates the robustness of CT
radiomic features against the technical parameters involved in
CT acquisition and feature extraction procedures using a

standardized phantom, and verifies the feature robustness by
using patient cases [28]. A total of 47 radiomic features of
textures and first-order statistics are extracted on the homoge-
neous region from all scans. Intrinsic variability is measured
to identify unstable features vulnerable to inherent CT noise
and texture. Susceptibility index is defined to represent the
susceptibility to the variation of a given technical parameter.
Eighteen radiomic features are shown to be intrinsically un-
stable on reference condition. The features are more suscepti-
ble to the reconstruction kernel variation than to other sources
of variation. The feature robustness evaluated on the phantom
CT correlates with those evaluated on clinical CT scans. This
study reveals that a number of scan parameters could signifi-
cantly affect the radiomic features. These characteristics
should be considered in a radiomic study when different scan
parameters are used in a clinical dataset.

3 Multi-Modal Image Reconstruction
and Registration

Another important research topic in medical imaging is math-
ematical methodology of CT reconstruction. Intensive studies
on this topic have been conducted at University of Tsukuba
and other institutions [29, 30]. A fast iterative image recon-
struction algorithm for short-scan fan-beam computed tomog-
raphy is developed by minimizing a data-fidelity term regu-
larized with a total variation penalty, in collaboration with
ZJU [29]. The prior information obtained from probabilistic
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Fig. 2 Example color map of the GLRLM gray level non-uniformity
features that compare the susceptibility to the low dose, sharp kernel,
large RFOV, and large sub-ROI size conditions in comparison with
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atlas constructed from earlier scans of different patients is
effectively utilized in low-dose CT imaging, in collaboration
with Suez Canal University, Egypt [30].

Besides, multiple modalities of medical imaging are often
used in clinical diagnoses and interventional imaging process-
es. The most challenging task is registration of the acquired
anatomical structure images and the surgical tools or designed
implants. This is through voxelization of freeform models and
synthesis of complex objects (see Fig. 3). A NURBS volume
representation and its voxelization algorithm [7] are invented
by Lin etc. between NTU and Beijing Normal University
(BNU). The key is estimation of a forward difference bound
to maximize the parameter step, thus speeding up the
voxelization [8]. Although the mathematical proof of the
bound is given in the work, a statistical model and adaptive
bound may produce a more effective forward difference algo-
rithm; and the model can be trained via 3D convolutional
neural networks.

To verify the volumetric image registration, a sub-voxel
digital volume correlation (DVC) method combining the 3D
inverse compositional Gauss-Newton (ICGN) algorithm with
the 3D fast Fourier transform-based cross correlation (FFT-
CC) algorithm is developed by Wang etc. from NTU [9].
The new algorithm can eliminate path-dependence in the con-
ventional iterative DVC methods caused by the initial guess
transfer scheme.

4 Machine Learning for Medical
Segmentation and Classification

Medical segmentation and classification is largely based on
feature extraction and detection. On cellular image feature
extraction, pattern recognition and classification, a Springer
monograph is published by Xu etc. between NTU and ZJU
[10]. Using the antinuclear antibodies (ANAs) in patient se-
rum as the subjects and the Indirect Immunofluorescence (IIF)
technique as the imaging protocol, the Bag-of-Words (BoW)
framework and a Linear Local Distance Coding (LLDC)
method is introduced. A rotation invariant textural feature of

Fig. 3 Hybrid femur with
registered implants (left) vs CT
images (right) [7].

Pairwise Local Ternary Patterns with Spatial Rotation
Invariant (PLTP-SRI) is also defined which is robust to noise
and weak illumination. While the proposed PLTP-SRI feature
extracts local feature, the BoW framework builds a global
image representation, thus aggregation of the two kinds of
features in different aspects achieves excellent classification.

Also based on the feature detection, a statistical model for
segmentation and identification of hormone response ele-
ments (HREs) in genomic sequences is reported by
Stepanova etc. [11]. Based on the verified HREs carrying di-
nucleotide preservation in comparison with uniform nucleo-
tide distributions, both mono and di-nucleotide Position
Weight Matrices are computed to extract the statistic pattern
of the positions.

For temporal autocorrelation present in functional magnet-
ic resonance images (fMRI), a mixed spectrum analysis
(MSA) of the brain voxel time-series is proposed by Arun
etc. [12]. It can segment the discrete component correspond-
ing to input stimuli and the continuous component carrying
temporal autocorrelation. In their experiments, varying corre-
lation structure among the brain regions does not affect the
efficiency of the method. Brain activation is detected by
predicting the likelihood of activation by comparing the am-
plitude of discrete component at stimulus frequency across the
brain voxels by using normal distribution and modelling spa-
tial correlations among the likelihood with a conditional ran-
dom field.

Aimed at segmenting and tracing filamentary structures in
both neuronal and retinal images (see Fig. 4), a two-step
graph-theoretical approach is proposed by Jedeep etc. be-
tween NTU and A-Star Bioinformatics Institute [13, 14].
The key idea is that the problem can be reformulated as label
propagation over directed graphs, such that the graph is to be
partitioned into disjoint sub-graphs, or equivalently, each of
the neurons (vessel trees) is separated from the rest of the
neuronal (vessel) network.

Recently, a generic and robust low-rank nonlinear
kernelization in the framework of statistical shape models
(SSM) is presented in [15] by Ma etc. between NTU and
Fraunhofer Institute Singapore. It effectively solves data
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Fig. 4 Segmentation results from various experimented algorithms (Disc in the Gold Standard labels the crossover of the filamentary structures) [13].

contamination and arbitrary corruptions in 3D medical image
segmentation. The SSM and Deep Neural Networks are incor-
porated via Bayesian inference with the shape prior from SSM
and initial structure localization from deep learning. The mod-
el shows great potentials for those use cases where training
datasets are large enough.

Accurate segmentation of brain in MRI has been an impor-
tant task in neuroimaging analysis and yet remained as a chal-
lenging issue due to the presence of equipment noise and the
complexity of the brain structure. A new method based on the
back propagation (BP) neural network and the AdaBoost al-
gorithm is presented by Chao et al. in [27]. The system is
trained using a gravitational search algorithm to establish 10
groups of back propagation neural network (BPNN) by apply-
ing 10 groups of different data. Subsequently, the AdaBoost
algorithm is adopted to obtain the weight of each BPNN. In a
comparison experiment using a group of brain MRI datasets,
the proposed method outperforms the four state-of-the-art seg-
mentation methods through subjective observation and objec-
tive evaluation indexes.

Endoscopic image analysis has an increasing importance
due to the wide spread of minimally-invasive surgery. Deep
learning-based real-time pathology classifications of endo-
scopic images have been pioneered by Nagoya University
[31]. Musculoskeletal applications are becoming important
in the super-aging society in Japan. CNN-based segmentation
of vertebrae of X-ray video during swallowing is addressed by
University of Tsukuba [32], while segmentation of individual
muscles, bones and implants as well as metal artifact reduction
from CT are addressed by Nara Institute of Science and
Technology (NAIST) and Osaka University [33, 34] whose
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particular advantage is prediction of segmentation accuracy
using uncertainty estimated from Bayesian U-net [34].
Statistical shape models are used for mandibular segmentation
at NAIST in collaboration with University of Tehran [35]. The
lung has been addressed by Yamaguchi University and Osaka
University and machine-learning approaches are utilized for
lung disease classification [36, 37] partly in collaboration with
Dalian University of Technology [37].

5 Intelligent Computer-Aided Diagnosis
and Interventional Imaging

Maximum Likelihood (ML) is a popular optimization criteri-
on in phylogenetics and basic medicine. However, inference
of phylogenies with ML is NP-hard. Recursive-Iterative-
DCM3 (Rec-I-DCM3) is a divide-and-conquer framework
that divides a dataset into smaller subsets (subproblems), ap-
plies an external base method to infer subtrees, merges the
subtrees into a comprehensive tree, and then refines the global
tree with an external global method. In [16] Du etc. present a
novel parallel implementation of Rec-I-DCM3 for inference
of large trees with ML. In diagnostic processes, they use
RAXML as external base and global search. 6 large real-data
alignments containing 500 to 7769 sequences are tested with
satisfactory diagnostic accuracy. In the basic medicine, prob-
ability and statistic models are also proposed by Stepanova
etc. for specialized transcription factors to recognize specific
DNA sequences [17]. A Hopfield neural classifier is devel-
oped with the flexibility of internal structure being adapted
recurrently for the target motif structure.
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For telemedicine with mobile devices, a single-pass vol-
ume rendering algorithm is developed for the popular
WebGL platform by Movania etc. [18]. A remarkable advan-
tage is that it can directly run on most embedded and mobile
devices, thanks to interface by the OpenGL ES 2.0 shading
API, thus can be implemented efficiently on the embedded
GPU in the mobile device, as shown in Fig. 5.

Considering multiple features of medical images, Yu etc.
between Xiamen University and NTU define a set of visual
features to represent the information of its color, texture and
shape [19]. With the patch alignment framework, a new sub-
space learning method, termed Semi-Supervised Multimodal
Subspace Learning (SS-MMSL), is invented to encode differ-
ent features from different modalities into the subspace. It
adopts the discriminative information from the labeled data
to construct local patches and aligns these patches to get the
optimal low dimensional subspace for each modality, achiev-
ing improved medical diagnostic accuracy. This approach is
also taken by Jadeep etc. [20] in the filamentary tracing prob-
lem, in which the matrix-forest theorem is applied.

In cardiovascular disease diagnosis and prognosis, arrhyth-
mia heartbeat classification is crucial in electrocardiogram to
help prevent stroke or sudden cardiac death. A novel ECG
arrhythmia classification method is reported by Yang etc. from
Hebei University [21], addressing stacked sparse auto-
encoders (SSAEs) and a softmax regression model. Via deep
learning, the algorithm can hierarchically extract high-level
features from huge amount of ECG data.

Interventional imaging is a crucial technique for computer-
aided therapy and surgery. For real-time synthesis of medical
objects, dynamics simulation of deformable models with an-
isotropic materials is introduced in a monograph by Cai etc.
from NTU [22]. Their fibre-field incorporated corotational
finite element model (CLFEM) can work directly with a con-
stitutive model of transversely isotropic materials, displaying

Fig. 5 Single-pass volume
rendering for WebGL compliant 08 atos

Dynamics
incorporated Simulation of
orthogonal Myocardium
anisotropic Contraction
FEM model and Relaxation
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Fig. 6 Fibre-field incorporated corotational finite element model (Green
dots are constraints).

adaptive dynamic features of the anatomical structures, as il-
lustrated by the video clips in Fig. 6.

As confocal laser endomicroscopy (CLE) is a minimally
invasive optical technique that enables in vivo imaging of
tissue structures, and also holds potential for guided biopsy
procedures, application of CLE to imaging oral cavity lesions
is reported by Thong etc. from Singapore General Hospital
[23]. Along the direction of accurate interventional imaging
is the development of a fiber-optic bending sensor based on
the propagation of LP,; mode by Fan etc. from ZJU [24]. In
the experiments, the new sensor achieves a sensitivity of
4.13 rad/m ! and exhibits the temperature-immune, thus can
detect both bending direction and bending angle with a large
dynamic range.

Upon acquisition of images and sensed surgical tools, an
interactive process relies on real-time feedback of the

mobile device [18]. o

Inputs

Total Slices —J 512
Show Grid ™

Auto Rotate ™

Datasets

© Aorta

€ CTHead

© Skull

© Visible Male Head

@ Stent
© Heart

b

@ Springer



274

J Sign Process Syst (2020) 92:269-275

augmented imaging systems. GPU based volume rendering
algorithms have attracted researchers, especially in a cloud
environment to have ubiquitous data processing and visuali-
zation capability. A pervasive computing solution is presented
by Movanian etc. [25, 26] for highly accurate and real-time
volume rendering.

6 Concluding Remarks

Research topics addressed in the above sections include im-
aging instrumentation, registration, reconstruction,
multimodality methods, noise filtering and image enhance-
ment, segmentation, classification and feature detection, mod-
el based imaging, as well as system development and acceler-
ation technologies. While we are positive to recent reports on
machine intelligence, we would also present to the readers the
achievements and challenging issues in much talked data min-
ing and deep learning; we would thus leave open for the
readers the question of whether machine intelligence can ef-
fectively work in medical imaging and clinical diagnosis.

Compliance with Ethical Standards
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