Skip to main content
Log in

Fractional Fourier-Radial Transform for Digital Image Recognition

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper presents a new system for pattern recognition in digital images, called Fractional Fourier-Radial Transform, invariant to translation, scale and rotation (TSR invariant) taking advantage of the well-known properties of some integral transform as Fourier Transform, Mellin Transform and the Radial Hilbert Transform. The main contribution of this work is the use of the Fractional Fourier Transform to avoid, or reduce the overlap between results due to the optimal order selection for each reference image, assuming α = β for computing optimization, which helps to get a higher difference between the reference images spectrum. This system was tested using different species of phytoplankton obtaining a level of confidence of at least 92.68% invariant to position, size, and rotation, supporting scale variations of ±20%. The mean of the highest confidence values for the scale variation correlations is 98.47%, for rotation variation correlations is 100%, and for the rotation and scale variation correlations is 98.15%. The testing dataset images are selected due to their morphology complexity; they have a real pattern to be recognized instead of using a test-book data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. Lugt, A. V. (1964). Signal detection by complex spatial filtering. IEEE Transactions on Information Theory, 10(2), 139–145.

    Article  MATH  Google Scholar 

  2. Guerrero-Moreno, R. E., & Álvarez-Borrego, J. (2009). Nonlinear composite filter performance. Optical Engineering, 48(6), 067201.

    Article  Google Scholar 

  3. Lerma-Aragón, J. R., & Álvarez-Borrego, J. (2009). Vectorial signatures for invariant recognition of position, rotation and scale pattern recognition. Journal of Modern Optics, 56(14), 1598–1606.

    Article  MATH  Google Scholar 

  4. Hoang, T.V. & Tabbone, S. (2010). A geometric invariant shape descriptor based on the Radon, Fourier, and Mellin transforms. In Pattern Recognition (ICPR), IEEE 2010 20th International Conference on pp. 2085–2088.

  5. Nacereddine, N. et al. (2010). Shape-based image retrieval using a new descriptor based on the radon and wavelet transforms. In Pattern Recognition (ICPR), IEEE 2010 20th International Conference on pp. 1997-2000.

  6. Solorza, S., & Álvarez-Borrego, J. (2010). Digital system of invariant correlation to position and rotation. Optics Communication, 283(19), 3613–3630.

    Article  Google Scholar 

  7. Álvarez-Borrego, J., Solorza, S., & Bueno-Ibarra, M. A. (2013). Invariant correlation to position and rotation using a binary mask applied to binary and gray images. Optics Communication, 294, 105–117.

    Article  Google Scholar 

  8. Solís-Ventura, A., Álvarez-Borrego, J., & Solorza, S. (2014). Adaptive nonlinear correlation with a binary mask invariant to rotation and scale. Optics Communication, 339, 185–193.

    Article  Google Scholar 

  9. Guerra-Rosas, E., & Álvarez-Borrego, J. (2015). Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis. Biomedical Optics Express, 6(10), 3876–3891.

    Article  Google Scholar 

  10. Barajas-García, C., Solorza-Calderón, S., & Álvarez-Borrego, J. (2016). Classification of fragments of objects by the Fourier masks pattern recognition system. Optics Communication, 367, 335–345.

    Article  Google Scholar 

  11. Guerra-Rosas, E., Álvarez-Borrego, J., & Angulo-Molina, A. (2017). Identification of phytoplankton species using Hermite transform. Biomedical Optics Express, 8(4), 2185–2194.

    Article  Google Scholar 

  12. Hsu, H.P. (1998). Análisis de Fourier, Addison Wesley Longman de México S. A. de C. V.

  13. Casasent, D., & Psaltis, D. (1976). Scale invariant optical transform. Optical Engineering, 15(3), 153258.

    Article  Google Scholar 

  14. Lohmann, A. W., Ojeda-Castañeda, J., & Díaz-Santana, L. (1996). Fractional Hilbert transform: Optical implementation for 1-D objects. Optical Memory and Neural Networks, 5(3), 131–135.

    Google Scholar 

  15. Ojeda-Castañeda, J., & Jara, E. (1986). Isotropic Hilbert transform by anisotropic spatial filtering. Applied Optics, 25, 4035–4038.

    Article  Google Scholar 

  16. Alcaraz-Ubach, D.F. (2015) Applied mathematics bachelor thesis. Science Faculty, UABC.

  17. Gara, A. D. (1979). Real-time tracking of moving objects by optical correlation. Applied Optics, 18(2), 172–174.

    Article  Google Scholar 

  18. Bruck, H. A., McNeill, S. R., Sutton, M. A., & Peters III, W. H. (1989). Digital image correlation using Newton-Raphson method of partial differential correction. Experimental Mechanics, 29(3), 261–267.

    Article  Google Scholar 

  19. Davis, J. A., Waring, M. A., Bach, G. W., Lilly, R. A., & Cottrell, D. M. (1989). Compact optical correlator design. Applied Optics, 28(1), 10–11.

    Article  Google Scholar 

  20. Kumar, V., & Hassebrook, L. (1990). Performance measures for correlation filters. Applied Optics, 29(20), 2997–3006.

    Article  Google Scholar 

  21. Fimbres-Castro, C., et al. (2013). Nonlinear correlation by using invariant identity vectors signatures to identify plankton/Correlación no lineal utilizando firmas de vectores identidad para la identificación de plankton. Gayana, 77(2), 105–124.

    Article  Google Scholar 

  22. Take, W. A. (2015). Thirty-sixth Canadian geotechnical colloquium: Advances in visualization of geotechnical processes through digital image correlation. Canadian Geotechnical Journal, 52(9), 1199–1220.

    Article  Google Scholar 

  23. Benesty, J., et al. (2009). Pearson correlation coefficient. In noise reduction in speech processing (pp. 1–4). Berlin, Heidelberg: Springer.

  24. Casasent, D., & Psaltis, D. (1976). Scale invariant optical correlation using Mellin transforms. Optics Communication, 17(1), 59–63.

    Article  Google Scholar 

  25. Derrode, S., & Ghorbel, F. (2001). Robust and efficient Fourier–Mellin transform approximations for gray-level image reconstruction and complete invariant description. Computer Vision and Image Understanding, 83(1), 57–78.

    Article  MATH  Google Scholar 

  26. Namias, V. J. (1980). The fractional order Fourier transform and its application to quantum mechanics. IMA Journal of Applied Mathematics, 25(3), 241–265.

    Article  MathSciNet  MATH  Google Scholar 

  27. Ozaktas, H. M., & Mendlovic, D. J. (1993). Fractional Fourier transforms and their optical implementation. II. Journal of the Optical Society of America, 10(12), 2522–2531.

    Article  Google Scholar 

  28. Almeida, L. B. (1994). The fractional Fourier transform and time-frequency representations. IEEE Transactions on Signal Processing, 42(11), 3084–3091.

    Article  Google Scholar 

  29. Pellat-Finet, P. (1994). Fresnel diffraction and the fractional-order Fourier transform. Optics Letters, 19(18), 1388–1390.

    Article  Google Scholar 

  30. Mendlovic, D., Ozaktas, H. M., & Lohmann, A. W. (1995). Fractional correlation. Applied Optics, 34(2), 303–309.

    Article  Google Scholar 

  31. Bitran, Y., Zalevsky, Z., Mendlovic, D., & Dorsch, R. G. (1996). Fractional correlation operation: Performance analysis. Applied Optics, 35(2), 297–303.

    Article  Google Scholar 

  32. Ozaktas, H. M., Kutay, M. A., & Mendlovic, D. (1999). Introduction to the fractional Fourier transform and its applications. Chap 4. In P. W. Hawkes (Ed.), Advances in imaging and electron physics (pp. 239–291). New York: Academic.

    Google Scholar 

  33. Davis, J. A., McNamara, D. E., Cottrell, D. M., & Campos, J. (2000). Image processing with the radial Hilbert transform: Theory and experiments. Optics Letters, 25(2), 99–101.

    Article  Google Scholar 

  34. Pei, S.C. & Ding, J.J. (2003) In Acoustics, Speech, and Signal Processing, Proceedings. (ICASSP'03). 2003 IEEE International Conference on, Vol. 3, pp. III-357.

  35. King, F. W. (2009). Hilbert transforms (Vol. 1, pp. 1–858). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  36. Reid, M. B. (1989). Simultaneous position, scale, and rotation invariance pattern classification using third-order neural networks. International Journal of Neural Networks, 1, 154–159.

    Google Scholar 

  37. Spirkovska, L., & Reid, M. B. (1992). Robust position, scale, and rotation invariant object recognition using higher-order neural networks. Pattern Recognition, 25(9), 975–985.

    Article  Google Scholar 

  38. Levkovitz, J., Oron, E., & Tur, M. (1997). Position-invariant, rotation-invariant, and scale-invariant process for binary image recognition. Applied Optics, 36(14), 3035–3042.

    Article  Google Scholar 

  39. Abdel-Kader, R. F., Ramadan, R. M., Zaki, F. W., & El-Sayed, E. (2012). Rotation-invariant pattern recognition approach using extracted descriptive symmetrical patterns. International Journal of Advanced Computer Science and Applications, 3(5).

  40. Solorza, S., & Álvarez-Borrego, J. (2015). Position and rotation-invariant pattern recognition system by binary rings masks. Journal of Modern Optics, 62(10), 851–864.

    Article  Google Scholar 

  41. Garza-Flores, E., & Álvarez-Borrego, J. (2018). Pattern recognition using binary masks based on the fractional Fourier transform. Journal of Modern Optics, 65(14), 1634–1657.

Download references

Acknowledgements

Luis Felipe López-Ávila is a student in the Ph. D. program of Optics Department in CICESE (Centro de Investigación Científica y de Educación Superior de Ensenada) and supported by CONACyT’ s (Consejo Nacional de Ciencia y Tecnología) scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josué Álvarez-Borrego.

Ethics declarations

Disclosures

The authors reported no potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Ávila, L.F., Álvarez-Borrego, J. & Solorza-Calderón, S. Fractional Fourier-Radial Transform for Digital Image Recognition. J Sign Process Syst 93, 49–66 (2021). https://doi.org/10.1007/s11265-020-01543-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-020-01543-0

Keywords

Navigation