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Abstract
High Level Synthesis (HLS) tools enable application domain experts to implement applications and algorithms on FPGAs.
The majority of present FPGA applications is following a stream processing model which is almost entirely implemented
statically and not exploiting the benefits enabled by partial reconfiguration. In this paper, we propose a generic approach
for implementing and using partial reconfiguration through an HLS design flow for Maxeler platforms. Our flow extracts
HLS generated HDL code from the Maxeler compilation process in order to implement a static FPGA infrastructure as well
as run-time reconfigurable stream processing modules. As a distinct feature, our infrastructure can accommodate multiple
partial modules in a pipeline daisy-chained manner, which aligns directly to Maxeler’s dataflow programming paradigm. The
benefits of the proposed flow are demonstrated by a case study of a dynamically reconfigurable video processing pipeline
delivering 6.4GB/s throughput.

Keywords Partial reconfiguration · HLS · Stream processing · Image processing · Maxeler · FPGAs

1 Introduction

Over the last decades, data processing applications were
getting constantly more complex. Scaling the number of
cores alone is no longer a feasible solution any more
due to the increasing utility costs and power consumption
constraints [1]. Thus, there is a growing need for delivering
more computing capability to process larger quantities of
data. Moreover, due to the fact that data volumes are often
growing substantially faster than processing capabilities,
data centers need to increase remarkably to catch up with
processing requirements.

Heterogeneous computing systems are considered to be
a viable solution for performance increase of computing
systems. The intent in using FPGA technology is stimulated
by the fact that FPGAs offer significant speedup and
energy efficiency [2]. For example, FPGAs were used as
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accelerators in the Baidu Search Engine [3], demonstrating
significant throughput and throughput-to-energy efficiency
ratio (of over 20x). These achievements resulted in
industry adopting FPGA acceleration widely and all major
cloud service providers have corresponding offerings (e.g.
Amazon F1 instances [4], Alibaba cloud services [5] and
Microsoft Azure [6]).

Over the last years, the use of High-Level- Synthesis
(HLS) tools, which create FPGA designs from high level
languages such as C, C++ or Java instead of Hardware
DesignLanguages (HDL), is on the rise.Now, theFPGAven-
dors Xilinx [7] and Altera [8] provide HLS frameworks
that allow developing run-time reconfigurable systemsus-
ing HLS. Although,allowing non FPGA experts to imple-
ment partially reconfigurable designs is an achievement
on its own, there are still some limitations in the capa-
bilities of corresponding reconfigurable systems. Major
limitations are that reconfigurable modules cannot be relo-
cated on the FPGA and that the whole system (static and
dynamic part) needs to be recompiled, should a change
takes place in either part. Additionally, each reconfig-
urable region cannot host multiple individual reconfig-
urable modules at the same time and there is no sup-
port to directly communicate between reconfigurable mod-
ules. This implies that processing pipelines cannot be
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0 implemented by directly stitching reconfigurable mod-
ules together, when using the vendor flow. However, there
are academic frameworks that allow the implementation of
more flexible reconfigurable systems (e.g., OpenPR [9] and
GoAhead [10]).

In addition to providing HLS enabled system flexibility
through partial reconfiguration, one characteristic of our
systems is that DDR memory controllers are kept active
during reconfiguration. This allows for keeping data stored
in DDR memory intact even if the FPGA gets reconfigured.
This is an improvement over existing Maxeler systems
where all the data stored in DDR memory gets corrupted
after configuration. Maxeler systems offer large capacity
FPGAs with access to a large amount of DDR memory
(tens of GBs). Maxeler offers stand alone systems with
accelerator cards for PCI-e as well as network offload
compute engines. Currently, a Maxeler system that is
reconfigured but required to keep the local DDR memory
contents intact would have to save the memory contents
temporarily to a host machine which can cost tens of
seconds due to the large amount of DDR memory and the
relatively slow PCI-e speed available.

Moreover, our work addresses the portability of imple-
mented modules. This means that we allow physically
implemented accelerators to be ported to another applica-
tion. In our approach, multiple accelerator modules form
a library and by using predefined physical interfaces, we
allow integrating accelerators directly from a netlist or at
bitstream level.

In summary, in this paper we are presenting a system
that allows the dynamic integration of stream processing
operators based on an automatic HLS approach. This allows
Maxeler users to create dynamic system implementations
that are independent amongst the static system and the
accelerators and that can be arbitrarily stitched and daisy-
chained in a reconfigurable region of a project. The main
contributions of this work include:

– A Maxeler language extension and its corresponding
automatic front-end preprocessing mechanisms to
enable dynamic Maxeler Java implementations directly
from an HLS application (Section 4).

– An automatic mid (Section 5) and back-end (Section 6)
toolflow for run-time reconfigurable systems that
enables application domain experts to build FPGA
partial configuration bitstreams from HLS code that is
written in Maxeler’s Java dialect.

– Enabling design choices through software (Section 4.5),
as well as portability, module replication, and module
stitching on Maxeler systems (Section 6.2).

– An implementation and evaluation of a dynamic video
processing system running on a MAX3 platform
(Section 7).

2 RelatedWork

The first work applying partial reconfiguration on aMaxeler
platform was the MSc project of J.J. Jensen [11]. In that
work, the author presents a library of database accelerators
that can be dynamically modified at run-time. The goal
of that project was to show that some database queries
can be accelerated in hardware by stitching together
basic building blocks at run-time. The building blocks
would be chosen depending on the query that is currently
executed. The project was not fully implemented on an
FPGA. Although, the author proves that accelerating queries
in FPGAs dynamically can offer significant speedup by
putting together smaller building blocks in order to create
a datapath. In that project [11], all reconfigurable modules
had been implemented as RTL designs rather than using
MaxJ specifications.

R. Cattaneo in [12] also focuses on dynamic reconfigu-
ration on Maxeler. That work considers a video streaming
application like the one considered in this paper. The appli-
cation includes 4 filters, which are Noise cancellation,
Greyscale, Edge detection, and Threshold filter. The achiev-
able throughput is 64.8 MB/s on a single stream and [12]
also considers multiple regions and multiple stream opera-
tors with 4 input streams and 8 regions, which resulted in an
aggregated throughput of 176.4 MB/s. Our proposed system
in this paper can achieve a more than 36x faster through-
put than the there presented single stream application on the
same Max3 platform (see Sections 7).

The work in [12] does not include relocation and
replication of the generated accelerators. However that work
does suggest the chaining modules but at compile time.
This would be prohibitively slow for run-time adaptive
systems such as database acceleration where the exact chain
of the modules is only known at run-time. In addition,
[12] does not consider automatic placement, which is
essential when introducing a low-level implementation for
non-FPGA experts.

3Maxeler Dataflow ProgrammingModel

This section describes the current Maxeler tool, in
terms of the user experience, the design methodology,
the programming model, and the Maxeler compiler.
Additionally, we will introduce our proposed dynamic flow
in a top-down view, as will be described in the next sections.

3.1 Maxeler Static Dataflow

Maxeler Workstations are hybrid computing platforms that
use CPU and FPGAs. The FPGA devices provided by
Maxeler are programmed by a Java dialect, which is called
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MaxJ. The Maxeler design flow saves a significant time for
debugging, as it allows verifying the functional correctness
through development tools such as MaxDebug on the CPU.
Also, the system has an automatically generated interface
between the FPGAs and the host and, depending on the
input interface, a system may use PCI-E and/or Memory.
Once an application is debugged, the MaxJ code will be
compiled into a bitstream for the FPGA using a compile
by correction approach. As in most of the HLS tools,
a Maxeler user is not required to have FPGA specific
knowledge to use the platform. However, for certain FPGA
specific optimizations offered by Maxeler, basic knowledge
of the devices is required (e.g. pipelining depth, memory
configuration and stream clock frequency).

Maxeler systems are used in industry and academic
projects and had shown outstanding performance, for
example for geological applications [13], biophysical
modeling [14], and convolutional neural networks [15].
Maxeler provides a large library of accelerators for
applications of different domains, such as Databases,
Medical Application, Image/Video processing, Networking,
and so on [16].

In order to implement an application on a Maxeler
system, a designer has to provide three basic parts 1) the
CPU interface code, which is C code that handles the
data that flows between the software on the CPU and the
accelerator running on the FPGA, 2) the Kernel/Kernels,
which contain the functionality that will be implemented
on the FPGA, and 3) the Manager, which combines the
accelerators functionality (i.e. kernels) and handles the
on-board (between kernels) and off-board data movement
(between the host and the FPGA). The functionality
of the kernels and the manager is entirely described

through Java and MaxJ functions [17]. After debugging
and simulating the MaxJ code, Maxeler compiles all the
existing kernels and the manager of the system through
the Maxeler MaxCompiler. The MaxCompiler analyzes
the MaxJ code and generates the corresponding VHDL
code. After the VHDL code generation, the Xilinx FPGA
vendor compilation tools perform the implementation,
which includes synthesis, technology mapping, place and
route, and, finally, generating the bitfile. In this paper,
we are using a Maxeler system with a Xilinx Virtex 6
FPGA, which implies using the ISE tool. After the vendor
compilation process, the MaxFile is generated. TheMaxFile
is a monolithic binary which contains both the full static
configuration of the FPGA and the host machine binary file.
In order to run the application, Maxeler uses both the CPU
interface code and the MaxFile, which is executed on the
FPGA. Figure 1 illustrates the whole design flow.

The manager orchestrates the connections between
the software and the hardware and within the hardware
application itself for each Maxeler project. Each Maxeler
project has exactly one active manager file which contains
the full implementation of the desired application. The
generated files before and after the RTL generated version
of the manager file are handled by the MaxCompiler. The
manager file also contains the software interface commands.
Each manager can have multiple run interfaces, which
are enabled for more complex systems, where specific
parts of an implementation may be enabled. Moreover,
a user can define these interfaces in the manager for
controlling the whole application. The available Maxeler
interfaces are Basic static, Advanced static, and Advanced
dynamic. Basic Static allows a single function call to
run the application, while the Advanced Static interface

Figure 1 High level view on the
Maxeler static MaxJ to MaxFile
flow.
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allows control of loading the applications and setting
multiple complex actions. Advanced Dynamic allows for
full scope of dataflow optimizations, fine-grained control of
allocation, and de-allocation of all dataflow resources.

In addition to the implementation of applications in
MaxJ, Maxeler offers a Custom HDL interface to allow the
integration of RTL code to be used within a Maxeler system.
Using this flow, a designer provides VHDL or netlist files,
while the Kernel acts as a wrapper for the connections with
the Manager. The final result is still a MaxFile, but the
compiler keeps the RTL files and generates the logic before
and after the added RTL hierarchy.

Maxeler allows for parallelizing applications across
multiple FPGAs by using MaxRing. MaxRing provides
a streaming connection between FPGAs for allowing the
composition of long multi-FPGA processing pipelines.

3.2 Dynamic Maxeler Dataflow

This work aims at introducing dynamic partial reconfigura-
tion on Maxeler platforms. To achieve this inside the given
toolflow, there must be additional processes that allow the
current tool flow for implementing static only systems to
generate the code that comprises the parts of the dynamic
system. This results in two parts: 1) the static implementa-
tion and 2) the dynamic accelerators/kernels. As a high level
summary, we implemented 3 different levels of background
processing, the front, mid, and back-end.

Figure 2 depicts the proposed approach to allow the
current static only framework of Maxeler to generate
dynamic systems. This figure also correlates with Fig. 1 and
illustrates where at each level we have modified the static
Maxeler flow. In Fig. 2, the flow is not changed until after

the programing of the kernels and the manager in MaxJ.
Then, the front-end process modifies and separates the static
implementation from the accelerators before progressing to
the MaxCompiler to generate the respective RTL code.

After the RTL code generation, additional changes
occur in order to allow the implementation of independent
building blocks. This process is handled by our mid-
end process that will modify the generated code (as
detailed in Section 5) accordingly and make this modified
code available for physical implementation. The physical
implementation is handled by the back-end process, which
uses a combination of academic and Xilinx tools to generate
the final physical implementation of the toolflow.

In contrast to Fig. 1, our flow generates two outputs.
This includes a MaxFile of the project (i.e. a monolithic
binary consisting of the software application binary and
the configuration bitstream), that will be generated by the
static implementation of the dynamic project. However, in
every dynamic application on FPGAs there are a number
of dynamic accelerators to switch at run-time. Those
accelerators will be implemented as partial modules that
will constitute a partial module library.

4 Dynamic MaxJ Specifications

Introducing a flow for partial reconfiguration in an HLS
tool requires that the HLS language allows for describing
the implemented system subparts (i.e. dynamic accelerators,
static accelerators, and static system). Currently, a Maxeler
user can not describe a dynamic system through MaxJ. In
order to provide such functionality for this HLS language,
it was decided to introduce a language extension for MaxJ.

Figure 2 Proposed Maxeler
dynamic MaxJ to MaxFile flow.
The blue oval functions
correspond to the added
subprocesses necessary for the
dynamic project
implementation.
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By introducing an extended version of the language, a
preprocessor is necessary for processing the predefined
extensions accordingly.

This section analyzes the existing limitations of MaxJ
for supporting partial reconfiguration. Those limitations are
tackled through a language extension. This section also
introduces a preprocessor to parse the extended version
of the language. In addition, we will analyze how the
preprocessor and the language extension was integrated
with the MaxCompiler to constitute a dynamic front-end
flow. Finally, the here presented flow allows additional out-
of-the-box design choices that enable reusability of the
generated components.

4.1 Existing Limitations

The first goal while designing a language extensions is to
allow all previously existing functions to be available in
the extended version of the tool without any changes. With
this, we allow all types of connections from the software to
the FPGAs and vice versa, for allowing design simulation
and the tool’s debug/error messages to function with the
extended dynamic applications, as used by Maxeler. With
this, we maintain the high-level user experience as know
from Maxeler.

For implementing a module library of reconfigurable
accelerator modules, the Maxeler compiler can not extract
RTL generated code of kernels that is not going to be used
in an application (i.e. code that is not instantiated in the
manager file). In other words, there is no way for the user
to force the tool to generate the dynamic components (i.e.
dynamic kernels) unless we instantiate them in the Maxeler
project. However, instantiating them is not an option as the
tool will generate additional connections for those kernels
that can not be easily removed by an after-processing
mechanism.

Another issue is that the MaxCompiler strictly compiles
only one manager file (see Section 3.1). This makes
sense for static FPGA systems. However, for run-time
reconfigurable systems that introduce not only kernels as
partial modules, but also multi-kernel blocks, a user will
need a new HLS description mechanism. Therefore, we
introduced multiple manager-like functions that allow the
instantiation of an arbitrary number of kernels and arbitrary
connections amongst those kernels.

Lastly, we have to provide a way to allow the definition
and the creation of dynamic connections in the Maxeler
manager. In the original Maxeler approach, a user could
set different interfaces to be orchestrated from software,
as mentioned in the previous section. In a Maxeler design,
a user can operate on multiple streams. However, some
streams and some parts of the design may be independent
from the rest of the system, while not being mutually

exclusive. An example is shown in Fig. 3, where the
implementation has an ICAPmodule and static kernel 1 that
are independent from the reconfigurable pipeline. The user
can choose to load data only to the ICAP module, without
triggering the other 3 streams or just perform a computation
on the static kernel 2. Note that this problem is different
than partial reconfiguration, as the three depicted streams
in the figure are not mutually exclusive to each other. Due
to the dynamics available through run-time reconfiguration,
we need to be able to set static and dynamic connections
from the manager file itself.

4.2 Language Extension

In order to extend the MaxJ dialect with the concept of
run-time reconfiguration, we introduced the concept of
PRGroups. A PRGroup is a manager-like Java function that
can contain from one to an arbitrary number of kernels.
In addition, a PRGroup is described as part of a Java
function, that can contain the same capabilities as a manager
constructor in the original Maxeler model. A PRGroup can
have arbitrary internal connections between the instantiated
kernels by the user. The PRGroups allow a user to define
building blocks containing any number of kernels and
also switching of accelerator modules/kernels in a dynamic
application.

A reconfigurable system may cluster a couple of
reconfigurable modules to one atomic unit. We foresee this
by the introduction of PRGgroups which are containers
for one or partially reconfigurable modules. PRGroups
are instantiated in the PRManager which can contain an
arbitrary number of PRGroups as well as connections to and
from the static part of the design. Alongside the PRGroups,
the PRManager contains the static kernels that constitute the
static part of the dynamic system.

The static instances and the PRGroups constitute a
dynamic design. The PRManager contains a description of
the dynamic design as shown in Fig. 3. The static system is
composed of the peripheral modules (e.g. for DDR memory
or PCI-e), static accelerators, an Internal Configuration
Access Port (ICAP) to reconfigure the device, and the
reconfigurable region that will host the partial modules.

Currently, in the original Maxeler programming
approach, a user needs to set the connections between the
CPU and the FPGA. However in a dynamic system, the
static part and the dynamic accelerators may have different
communication interfaces. Those communication interfaces
correspond to the streams connected to the static part of the
system. The dynamic streams will specify the connections
between the reconfigurable region and the dynamic accel-
erators. Therefore, the PRManager has to be able to define
and distinguish between static and dynamic connections.
This was done by introducing a different type of interface
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Figure 3 Block diagram describing a PRManager. The PRManager
is split in 2 parts: the static instances and the dynamic instances. A
PRManager can contain arbitrary connections and an arbitrary number
of static kernels (with at least a Reconfigurable region module and an
ICAP module). The static instances of the PRManager can also con-
tain full static connections like the one that is connecting static kernel

1, where its input and output do not interact with the dynamic sys-
tem, while a single stream needs to be connected to the ICAP module.
In addition, the PRManager can contain multiple PRGroups as part of
the dynamic instances. PRGroups have to fit the reconfigurable region
and the interface. The interface needs to match all PRGroups and the
reconfigurable region instantiation.

function, which is setDynamicStream (as an extension of
setStream in the original Maxeler approach) to define the
interface of the region that will host the partial modules,
as well as the partial modules themselves. An example of
a corresponding PRManager is shown in Fig. 3 where the
reconfigurable region and the PRGroups have the same
interface. This I/O interface is set by the function setDy-
namicStream, while with setStream, a user can define the
interface of the static system. This includes all the inputs
and outputs from and to the PCI-e and DDR memory. In
Fig. 3, the output streams of the reconfigurable region need
to be instantiated both by setDynamicStream and setStream.

The PRManager must contain at least 2 static instances:
the reconfigurable region and the ICAP core. The reconfig-
urable region is given through our Maxeler extension library
and it is implemented as an empty module with a connec-
tion from the input to the output. The reason for this is that
we need a way to force the tool to generate the necessary
physical connections for the region. The ICAP core is neces-
sary to load the partial module configuration bitstream into
the FPGA. In the here presented system, there may exist
accelerator kernels that will not be swapped at run-time, as
illustrated in Fig. 3. Those accelerators are called static ker-
nels and they will be part of the static system. Static kernels
are useful for parallel processing and pre or post-processing
for the partial modules. Static kernels are kernels that are
not specified as PRGroups.

A code example is depicted in Listing 1. The code
includes the definition of a PRManager as it is done nor-
mally by Maxeler programmers. Then, the implementations
for the ICAP and the reconfigurable region are included in
line 3 and 6, alongside their connections in lines 5 and 9–13.
The PRGroups definition occurs in line 15 and it contains

2 kernels that are instantiated in line 16 and 17 and simi-
larly their connections in lines 19–23. Whatever is out of a
PRGroup function (e.g. line 14–23) but within the PRMan-
ager class (e.g. line 1–24), it will be considered as a static
accelerator, as it is for the Partial region in line 6 and the
icapModule in line 4. As it is essential in the programming
model of Maxeler, the interface code that handles the con-
nections between software and hardware should be created
as shown in line 27. however, currently we have another
instance within the FPGA design which is the reconfig-
urable region. Thus, the connections to the region need to
be declared at this point. First the static connections are
declared in lines 37–39 and then, the connections to the
partial region are set as shown in lines 41 and 42 with the
introduced setDynamicStream function.

In the dynamic instances part of the PRManager in Fig. 3,
the user can define any number of PRGroups. PRGroups
are independent amongst each other and they follow the
same interface specifications as the reconfigurable region.
An example of three PRGroups is illustrated in Fig. 4. In the
static Maxeler approach, the kernels and the connections of
a manager are described in a Java constructor. Subsequently,
a PRGroup in our approach can contain anything that
an original manager Java constructor can contain. This
way, we guarantee that the PRGroup can include different
connections and one or more instantiated kernels.

A PRGroup must contain at least one kernel, as shown
for PRGroup N. This was the model when introducing the
dynamic approach where a single kernel was assumed as a
PRGroup to be reconfigurable. In addition, a PRGroup can
contain a pipeline of kernels like PRGroup 0 in Fig. 4. In
that example we can see that the kernels can have different
interfaces between them, as shown in PRGroup 0 between
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Listing 1 Example Java code of the MaxJ language extension.

kernel 0 to kernel 1 and between kernel 1 and kernel 2.
Moreover, a user can instantiate the same kernels in more
than one PRGroup, as done for kernel 2 in PRGroup0 and
PRGroup 1. A domain expert can create more complex
PRGroups, like PRGroup 1 that is using kernels with
different interfaces and streams in order to create a more
complex PRGroup.

4.3 MaxJ Preprocessor

The here proposed language extension readapts the idea
behind the Maxeler manager and introduces the PRManager
that contains the extended functionality of a dynamic
design. The reason for introducing the PRManager is that

each project can only have one active manager file. Hence,
to circumvent this issue, we allow multiple managers to
generate different kernels and connections. To achieve that,
we start from amain project and automatically split the main
project into multiple smaller projects (one for static system
and one for each PRGroup).

This is performed by a preprocessor that starts by
detecting the PRGroups of the specified project, as shown
in Fig. 5. For each one of the PRGroups, the tool creates
a Maxeler project directory. Those Maxeler projects are
only used by the tool to generate the RTL files of the
corresponding kernels. The projects will use the connections
defined in the manager interface with the extended function
setDynamicStream (see Section 4.2), in order to describe the
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Figure 4 Example block
diagrams of PRGroups. All
depicted PRGroups have the
same interface, (3 inputs and 2
outputs). A PRGroup can be a
single pipeline like PRGroup0
or a more complex group like
PRGroup1. PRGroup N is a
standalone kernel in this group.
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interface of all the PRGroups. The setStream functions will
set the connections with the static system.

In addition, the static part of the PRManager will be used
to generate a static project, which will be the project which
will later control the dynamic system. This ensures that the
programmers code remains unchanged. The preprocessor
concept allows for specifying the static system and all the
kernels in one project that can be automatically compiled
without touching the original Maxeler compiler or the
FPGA vendor tools.

4.4 Front-end Overview

After the project generation, the preprocessor runs the
MaxCompiler for all the projects until the end of the RTL
generation step of the Maxeler toolflow, as shown in Fig. 5.

The main difference, compared to the original flow is
that all the generated sub-projects will output possible error
messages in one log file in the initial project directory in
case of an error. At the same time, the static project will
act as the root project as the user can manage the inputs

PRGroup_0 PRGroup_1 PRGroup_N

PROJECT_NAME PR Manager

. . . . .Sta�c

MaxCompiler MaxCompiler MaxCompiler MaxCompiler

. . . . .

. . . . .

MaxJ 
preprocessor

PROJECT NAME sta�c PROJECT NAME Group_N

RTL PROJECT Group_N

PROJECT NAME Group_0 PROJECT NAME Group_1

RTL PROJECT sta�c RTL PROJECT Group_0 RTL PROJECT Group_1

Group_N top 
levelGroup_1 top 

levelGroup_0 top 
level

Figure 5 Front-end implementation flow. The input is the ini-
tial project for which the preprocessor generates the corresponding
projects (project directories are depicted as 3d boxes). After the project
generation, the MaxCompiler will process the MaxJ code and gener-
ate an RTL project version for each project generated by the MaxJ

preprocessor. The preprocessor generates the final RTL top level enti-
ties of each existing group (left side of the Figure). The outputs of the
front-end processing are the top level VHDL files for each group and
the RTL projects generated by the MaxCompiler.
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and outputs of the application from the static system and the
loading of modules through ICAP.

The last step of the preprocessor is to generate the
internal connections for the PRGroups in a VHDL top
level file. This subprocess is illustrated in the left side of
Fig. 5. The preprocessor will read the manager files in
MaxJ. Then, it will register the connections of the kernels
and it will create connections between the RTL generated
kernels in VHDL. This will create the final PRGroup top
level entity (in VHDL). All code transformations that are
performed though our toolflow happen on the RTL code
that is generated by the MaxCompiler and the entire process
does not require any user interaction. A user of our flow
will only interact with an HLS specification of the system
(MaxJ).

4.5 Design Choices

Through our language extension, the user can generate
not only partial modules, but groups of kernels that
constitute a partial module. However, there may be kernels
constituting PRGroups that can perform computations in
any permutation order. Thus, if an application contains N
kernels in different groups, generating every permutation
will result in N! groups of kernels to be implemented. This
solution is not scalable and, in some cases, it will be too time
consuming during implementation phases for the FPGA.

Therefore, we foresee to generate individual chainable
modules that require less implementations, if the config-
uration bitstreams of those kernels are relocatable. This
section describes the implementation of individual kernels
from PRGroups. The generation of each individual kernel
is called software design choices, while the relocatability
of the generated accelerator bitstreams will be described in
Section 6.2.

We decided to provide users with more flexibility in
terms of kernel combinations. An out-of-the-box approach
is to allow the generation of all the kernels instantiated in
PRGroups as individual partial modules for future usage
(assuming relocatable bitstreams). The resulting partial
modules can be chained directly by the run-time system.
Those kernels will be called unique kernels. Our approach
foresees to have only one physical implementation of a
kernel (e.g. using multiple instances of the same kernel
in the same or different PRGroups) and by using module
relocation, a kernel can be executed at different locations on
the FPGA.

The ability to reuse a physical implementation at
different locations will not only improve CAD tool time
but allow a system to compose stream processing pipelines
from daisy-chained relocatable kernel bitstreams, provided
that they are known at run-time. Though our flow, the
generated partial modules, both kernel groups and unique

kernels, will act as individual load-and-run modules. The
above characteristic corresponds to the software design
choices. However in hardware, we can allow additional
design choices in terms of placement that will be managed
transparently for the designer.

5 Architecture and RTL Implementation

When the Maxeler HLS compiler generates RTL code, it
provides clear hierarchies with well-defined communication
interfaces. We use this observation by our automated
compilation flow to split the generated project into a static
part and a set of accelerators. Additionally, the flow extracts
the hierarchy that belongs to the static system (which will
contain all the I/Os of the system) and the hierarchies that
belong to the accelerators.

This section explains the static system design, the
module implementation flow and the communication in
more detail. For each distinct part of the design, we present
the modifications that we applied to generalize the interface
of our design.

5.1 Internal Communication

The static system and the accelerators generated by the
MaxCompiler follow a predefined interface that is specified
in MaxJ by a user. This interface is fixed to a Maxeler
handshaking mechanism which is different for the input
and the output, as depicted in Fig. 6. The generated kernels
are using a chaining component which is generated by
the Maxeler compiler and which handles the connections
between kernels. This component contains a small FIFO
and an I/O control block. In addition, we can observe that
the Maxeler generated RTL kernels do not have a unified
interface on the input and the output. However, in order
to generate standalone partial modules, each accelerator
should be completely independent of external instances
(i.e. the chaining component) and each accelerator should
have a common interface at the input and the output. The
latter is important as we consider arbitrary chaining and
placement of modules in the reconfigurable region. Thus, to

MaxJ 
Kernel 0

empty
Al_empty

data

read valid

stall

data

I/O 
Control

FIFO

MaxJ 
Kernel 1

valid

stall

data

Chaining Component

data

empty
Al_empty

read

Figure 6 Original module chaining in Maxeler using a chaining
component.
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Figure 7 Modified kernels after the chaining module split. Kernels
contain an integrated FIFO that existed in the initial chaining module,
while its I/O control is placed in the static system.

introduce partial reconfiguration to the Maxeler platform, 1)
a common I/O interface is required and 2) partial modules
should be independent from external components.

In order to guarantee independency and relocatabillity
amongst kernels, we created a common interface for recon-
figurable modules. By separating the chaining component
into two parts, we can integrate the FIFO in the kernel and
keep the I/O control as part of the static system. This results
in an architecture shown in Fig. 7. As we can see, the inter-
face of the input and the output is exactly the same for each
kernel wrapper. This is essential as it allows accelerators
with the same interface to be arbitrarily daisy-chained by
stitching relocatable bitstreams together. Those bitstreams
can construct more complicated accelerator pipelines within
the reconfigurable region.

Following the description on Section 4.5, the unique
kernels and their hierarchies are saved in a specific
directory for unique kernels. This directory contains the
implementation-ready accelerators that will be available
for daisy-chained placement by the run-time system.
Additionally, the tool generates the PRGroup partial
modules in their corresponding RTL version, by generating
the top-level HDL code from the detected connections of
the front-end processing (i.e. the MaxJ preprocessor). The
mid-level process provides us with the number of resources
needed for each PRGroup and each unique kernel. Those
numbers are reported by the Xilinx tools and they are used
to calculate the minimum resources needed for the region.

5.2 Static System

The initial static system provided by MaxCompiler contains
an interface to the implemented accelerators. This interface
is shown in Fig. 6. However, as mentioned in Section 5.1,
the initial interface of the accelerators should be adapted
to a more partial reconfiguration friendly interface in RTL.
This has to be kept consistent with the I/O interface of the
reconfigurable region.

After the MaxCompiler generates the full functionality
of a Maxeler project (i.e. static system and accelerators),
further modifications will be performed through the mid-
level process. The static part will host the ICAP instance
to allow loading the dynamic kernels on the FPGA device.
However, we need to instantiate an RTL specific version of
the reconfigurable region in the static system that cannot be
instantiated in MaxJ. In addition, this region needs external
input control components to handle the data streamed
towards the reconfigurable region.

Figure 8 depicts a generated example system. Its
architecture consists of the Maxeler surrounding system
which contains I/O peripherals, the controls of the data
I/O, and the main interface that transfers data from
CPU to FPGA and vice versa though PCI-e or an
existing memory interface. The system also instantiates a
manager that contains a Custom HDL wrapper and one
or more HLS generated kernels. Partial reconfiguration is
performed through the Maxeler Interface, which is included
in Maxeler’s surrounding system which sends partial
configuration bitstreams to the Internal Communication
Access Port (ICAP) of the FPGA. The ICAP is instantiated
inside a Custom HDLwrapper that forwards input data from
the Maxeler interface to the ICAP (Fig. 9).

The reconfigurable region wrapper is a placeholder
module having the same interface with the accelerators
that will be instantiated by the run-time system. The MaxJ
version of the reconfigurable region will be replaced during
the RTL modification phase. The reason for this is that the
region needs physical constraints that cannot be specified in
MaxJ. Furthermore, the here presented flow aims at hiding
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Figure 8 High level view on a Maxeler generated system, before
modifications. Each Maxeler system contains a manager with all
the instantiated kernels. In addition, the I/O drivers and controls are
instantiated in the Maxeler surrounding system. This part remains
intact by our toolflow.
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Figure 9 Toolflow diagram
depicting the processing stages
that are done after we modify
the RTL code from the Maxeler
Compiler. The left half of the
figure illustrates the steps
occurring while implementing
the static part, while the right
focuses on the partial module
generation. External tools are
marked in blue, while Xilinx
tools are marked with grey.
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all the FPGA low-level details. As a solution, we replace
a MaxJ version of the reconfigurable region automatically
with a project-specific reconfigurable region.

Our mid-level tool called PR code generator instantiates
the region in the MaxJ generated RTL design. The
instantiation occurs by copying the necessary files in the
project directory and by setting location constraints for the
region itself in the User Constraint File (ucf). Each stream
towards the reconfigurable region contains an I/O control, as
shown in the Fig. 7. The I/O control handles the I/O between
two Maxeler instances. In our approach, this I/O control is
shared among all the kernels that will be placed in the region
for the specific stream (as in Fig. 7), instead of using one
I/O control between each kernel (as in Fig. 6).

The reconfigurable region is implemented as a loopback
device. By loopback device, we mean that the inputs of
the specific module are routed across the fabric (i.e. the
reconfigurable region) that it occupies, then performs a
U-turn and follows a backward path towards the Maxeler
surrounding system. The region interface is predefined at a
512-bit wide datapath, plus some extra handshaking signals,
however the user can define the desirable width of the
system, with a maximum of 512 bits of input data and 512-
bits of output data. We selected a datapath of 512-bit as this
allows for saturating a single DDRmemory channel. In case
that the user does not need all the bandwidth, our tool will
automatically ground the remaining signals.

5.3 Mid-level processing

In our automatic toolflow, we run a Python script to
generate the dynamic design. The script initially starts
by preprocessing the MaxJ code and generating all the

necessary projects. As depicted in Fig. 10 after the RTL
generation by the MaxCompiler, the script automatically
extracts the RTL code. This contains the IP cores given as
netlists and constraint files, as indicated in Fig. 2. Then,
the mid-level PR code generator processes separately the
original Maxeler generated RTL code of the static part of the
project and the partially reconfigurable kernels/accelerators
in the form of PRGroups. In the case of the static
system, we use an external tool (GoAhead) to generate the
reconfigurable region and its location constrains. We will
refer to this tool in more detail in Section 6.3.

For each detected PRGroup, the PR code generator
creates an independent project directory, as done for each
unique kernel. In those directories, the tool adds template
files (such as FIFOs and controls) which include the
necessary changes described previously in this section.
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Figure 10 Mid-level processing. The RTL projects generated by the
preprocessor and the Maxeler Compiler are modified to support partial
reconfiguration.
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Additionally, it modifies the generated files in order to
include the changes in the RTL code. Those modifications
are performed for both the static system and each kernel or
PRGroup to guarantee independency.

The mid-level processing phase automatically performs
changes for making all subparts of the implementation
independent. This process outputs RTL projects, HDL
instances and their resources that are ready for physical
implementation. The physical implementation is done by
the back-end process that handles all the low-level details of
our flow.

6 Low-Level Specifications

The physical implementation of an FPGA-based system can
take an extensive amount of time (in the range of hours) due
to the long FPGA CAD tool time. This section describes
how our toolflow allows building reconfigurable systems
faster by design preservation and by enabling parallel
compilation. Additionally, we provide a brief reference on
the background tools that we use to create our dynamic
system and explain the low level details of our approach.

The implementation process assigns an accelerator to
a partial module and creates the static system. After the
back-end processes, the static system will output a static
bitstream, which will be the core execution binary of
the dynamic project. On the other side, the modified
accelerators will output a library of partial modules that
correspond to the PRGroups and unique kernels. The
back-end processes for the static part and the accelerators
implementation will be analyzed in Sections 6.1 and 6.2,
respectively.

6.1 Reconfigurable Region and Static System

The reconfigurable region is the key component that
allows integrating run-time reconfigurable modules into the
surrounding static system. Thus, low-level design details
should be taken into account when physically implementing
the static system. This in particular includes the data
routing within the region as well as the clock routing. This
subsection provides details on the physical implementation.
Note that the interface of the reconfigurable region and the
accelerators and the allocated resources of the region are
covered in Section 5. The left half of Fig. 9 illustrates the
flow for generating the static part of the dynamic project.
After we generated the RTL version of the region, the
placement constraints and blocker files, we run the ISE flow
to generate a full bitfile of the static part of the dynamic
system. The region is instantiated in the VHDL code during
the modifications explained in Section 5.2. The blockers
are files that constrain the routing of the clock signals and

the data I/O and they are used only during the physical
implementation phases. All the implementation files are
generated by the GoAhead tool, which will be introduced
later in this section.

A fully placed and routed region is depicted in Fig. 11 as
a screenshot of Xilinx’s FPGA Editor tool. The screenshot
illustrates the physical implementation of the block diagram
shown in Fig. 8. Figure 11 depicts a physically implemented
partial region and the Maxeler surrounding system, which
is entirely generated by the MaxCompiler. In addition, the
physical implementation of the 512-bit loopback interface
is placed on the left of the region and it is used to move data
between the region and the Maxeler surrounding system.

For implementing the reconfigurable region, we manu-
ally floorplanned the system by taking into consideration
where Maxeler maps specific components. This includes in
particular the placement of the I/O cells for the PCIe and
DDR3 memory connections. Following this, we observed
that Maxeler does not use the corners of the device for
implementing the FPGA’s I/O infrastructure. Therefore, we
place reconfigurable regions in the corners of the device.

Figure 11 Empty reconfigurable region implementation (red boxed
part). The interface contains 512-bit of input and 512-bit of output,
plus some extra handshaking signals. The picture depicts the top-right
part of the chip. We can also observe the predefined routing which is
regularly structured within the region, while the rest of the system that
surrounds it is freely routed by Xilinx vendor tools.
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Note that this floorplanning can be used for future static
systems implementations. Our tool comes with different
reconfigurable region templates. Thus, a user can build a
dynamic system without the need of manual floorplanning.

The reconfigurable region represents the physical imple-
mentation of the MaxJ kernel wrapper shown in Fig. 8. The
reconfigurable region is empty except from some flip-flops,
which are used to implement a pipelined loopback routing
path. We also constraint the routing inside the reconfig-
urable region with blockers, both for internal signals and
the clock. The blockers preoccupy FPGA routing resources
and are used to guide the physical implementation of the
Xilinx vendor tools (place and route). This is important to
ensure that 1) the partially reconfigurable modules do not
interfere or collide with any routing resources used by the
static system, 2) all the I/O signals are routed through prede-
fined wires (such that a wire will be the output of a specific
signal in one kernel but the input of a consecutive kernel),
and 3) the reconfigurable region provides a clock on exactly
the same clock tree resources as used by the reconfigurable
modules.

6.2 Module Generation

This section covers the physical implementation details
to be considered when implementing reconfigurable mod-
ules. The implementation should ensure that an accelera-
tor/PRGroup is reusable by other projects and that it can be
loaded into a reconfigurable region. Thus, the same general-
ized routing for data and clock used in Section 6.1 must also
be used for the physical implementation of the accelerators.
However, partial modules require physical resources that
have a corresponding resource footprint on the FPGA (see
Section 6.3.2). Matching the resource footprint will guaran-
tee relocation and replication of the desired partial module
in different physical locations within a partial region. To
achieve this, a major challenge will be to strictly restrict the
full functionality of a partial module within a bounding box,
based on the resources required by the accelerator.

The right half of Fig. 9 illustrates the automatic flow
for the module generation. Starting from the modified
generated RTL code of the kernel, we need to calculate
exact module bounding boxes given the respective kernel’s
utilization (i.e. LUTs, DSPs, and BRAMs). After defining
the kernel’s bounding box, we need to generate placement
constraints and blockers around the predefined position.
Those blockers ensure that the module routing does
not cross its bounding box borders. With the generated
constraints, we can use the Xilinx toolchain to fully map and
place and route the module.

In order to implement the interface routing of the module,
we place flip-flops left and right of the module and leave
“holes” in the blocker, as depicted in Fig. 12. In this

Figure 12 Fully placed and routed PRGroup depicting the connection
macros and the interface connections. The connection macros
substitute the connections and routing within the reconfigurable
region. The zoomed figure shows that the routing is constrained not to
cross the border (in this case the top border) as well as the interface
wires on the left and the right side of the module implementation.

figure the module routing and interface is being depicted in
the zoomed subfigure. The RTL description of the unique
kernels and PRGroups is instantiated between the interface
flip-flops. The interface flip-flops are called Connection
macros and they are used as anchor points during the
physical implementation of the common interface of the
modules and the region to guarantee relocatability of the
generated partial modules. This process, can be run in
parallel, in order to generate the corresponding physically
implemented instances. Because there is no dependency
between the PRGroups and the unique kernels, it is possible
to run all PRGroup implementations and the static system
implementation in parallel.

The aforementioned process results in several implemen-
tations of fully implemented blocks of unique kernels and
PRGroups. Those blocks can be placed at different positions
that are pre-calculated initially within the reconfigurable
region. The result of the process is a final static configura-
tion bitstream and we can generate partial bitstreams using
either bitstream manipulation with the BitMan tool (see
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Figure 13 Stitching of reconfigurable modules in a reconfigurable
region in a pipeline fashion, following our dynamic approach.

Section 6.3) or by using the differential bitstream methodol-
ogy available by Xilinx. In the latter case, we need to place
the netlist of a reconfigurable module (including place and
route information) at the target position of our static system
(with the help of the GoAhead [18] tool). Both techniques
allow module relocation and replication. Figure 13 depicts
3 reconfigurable modules, which are placed in the reconfig-
urable region. Bitstream manipulation (BitMan [19]) allows
for rapid stitching of modules at run-time without running
any of the tools of the vendor Xilinx and relocation at netlist
level (using the GoAhead tool) allows static timing analysis
using Xilinx vendor tools. With this feature, we can guaran-
tee that any system created through bitstream manipulation
at run-time will meet timing (including both setup and hold
time).

The partial bitstreams can be saved in a library of stitch-
able kernels (given as partial bitstreams). Our flow can auto-
matically generate multiple physical implementations of the
same module to incorporate the heterogeneous resource lay-
out of logic, memory and arithmetic block columns (CLBs,
BRAMs and DSPs). This allows for a tighter placing of
modules. The combination of implementation alternatives
and placement position alternatives constitute the hard-
ware design choices, that are adding to the software design
choices, described in Section 4.5. Each PRGroup will also
generate a partial bitstream. In case a PRGroup contains
multiple kernels, its kernels will be outputted as partial
bitstreams as well and they can be used for building com-
binations of accelerators at run-time, should it be needed
by the user. Of course, a user can always define a new
PRGroup through the MaxJ code and follow the whole

toolflow to physically generate a new PRGroup; however,
this will be time consuming as the tool needs to generate a
new physical implementation. By generating the accelera-
tors individually, we offer a solution that can be generated
in milliseconds rather than hours.

When all bitfiles and placement positions are generated,
we load the kernels in user-definable order into the
reconfigurable region. A user is also able to replicate or
relocate existing modules. For that purpose, we save the
initially calculated placement positions in the design phase
in order to incorporate the placement of implementation
alternatives. This is automated by BitMan that adds
corresponding metadata to the original Xilinx configuration
bitstream.

In summary, one of the main contributions of this work
compared to full static implementations, is that the flow
can be parallelized. This is important as the mapping and
the routing tools need significantly more time with rising
complexity. Thus, splitting the design into distinct parts
(partial modules and static part) can save CAD tool time
when executed in parallel. Moreover with our flow, every
modification of the static system or an addition of a kernel
or a PRGroup will be done independently, without the need
of recompiling and re-implementing (including place and
route) the whole architecture. This is because changes in the
static system or a module will not interfere with other parts
of the system, hence allowing for recompiling only the parts
of the system that are changed.

Having introduced the implementation flow, we will
now take a closer look into the tools that we use in the
background to hide the low-level FPGA specific details.

6.3 Customized Tools

The FPGA vendor Xilinx provides tools that allow for
implementing run-time reconfigurable systems. However,
this flow implements partially reconfigurable modules as
an increment to a static system. This means that a module
can only work in its particular static system and that any
change to the static system requires a re-implementation
of the corresponding modules. In order to provide systems
with more flexibility, where modules can be implemented
independently to the static system and where modules can
be relocated across multiple different static systems, we are
using a chain of existing academic tools.

6.3.1 GoAhead

GoAhead is a tool that is used to create all the components
for the system’s reconfigurable design. GoAhead provides
floorplanning capabilities, communication infrastructure,
and constraints generation that are required for the physical
implementation. GoAhead can be controlled by either a
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Figure 14 GoAhead GUI
displaying device primitives and
an example for the definition of
a resource footprint.

GUI or through scripting. We use the scripting interface in
order to generate module bounding boxes or reconfigurable
regions, including all VHDL code templates and physical
constraints (for controlling the place and route step to
comply with the partial reconfiguration rules). A GUI
(Fig. 14) can be used for debugging, floorplanning purposes,
and module placement (at netlist level).

6.3.2 Bounding Box Generator

In order to search automatically for placement positions for
partial modules, we used the tool Bounding Box Generator
(BBG) [20], which checks the reconfigurable regions based
on different resource footprints. The resource footprint is
the relative layout of the logic primitive columns that a
module occupies, modeled as a string. The symbols of
the string represent the exact sequential order of primitive
columns (within a partial region or a module). Figure 14
provides an example of a resource footprint. Each resource
is shown with a different color in GoAhead such as red
for BRAMs (B), dark blue for DSPs (D), light blue for
SLICELs (L) and cyan for SLICEM (M). The tool checks
for possible placement positions and as the figure depicts,
in this specific case, the example module has 2 columns of
possible placement positions horizontally (indicated by the
resource footprint, shown in the Fig. 14).

6.3.3 BitMan

We use the tool BitMan to modify our design at the
bitstream level. BitMan supports functions that include
module placement, replication, and relocation of FPGA
bitstreams. BitMan can work as a standalone tool, but also
offers an API to place, relocate, and replicate modules
directly when running applications on the Max3 system.

BitMan supports Virtex-6, all 7-Series, and UltraScale
FPGAs from the vendor Xilinx.

7 Results

This section presents our results in terms of additional
resource requirements and timing overhead compared to the
initial non-reconfigurable Maxeler generated architecture.
In addition, we present design time metrics, as well as the
time that the tool needs to reconfigure the device.

7.1 Experimental setup

For our experiments, we used a Max3 Workstation which
provides a large Xilinx Virtex-6 XC6VSX475T FPGA
which is connected to the host computer via PCIe. The
FPGA is surrounded by 24GB (upgradable to 48GB) of
DDR-3 memory and the host CPU is an Intel(R) Core(TM)
i7-2600S clocked at 2.80GHz.

To demonstrate the benefits of our flow, a video/image
stream processing application was implemented where
various modules can be arbitrarily chained to form more
complex acceleration pipelines. A video of the flow and the
system in action is available at [21].

Our module library consists of 8 image processing func-
tions. Those are Brightness correction, Sobel edge detec-
tion, RGB-to-Greyscale, Skin Color Detection, Gaussian
blur, a Mean, a Minimum, and a Maximum value filter. In
addition we have implemented 3 PRGroups, containing a
Mean with a RGB filter, Brightness filter with a Skin detec-
tion filter, and a Min and Max filter. All of those functions
are generated entirely by the Maxeler compiler from MaxJ
code. Figures 15 and 16 depicts an FPGA-editor screenshot
showing placed and routed kernels and routed PRGroups.
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Figure 15 Fully implemented PRGroups, as shown in Xilinx’s FPGA
editor tool. The illustrated kernels are (l.t.r.) Mean with a RGB filter,
Brightness filter with a Skin detection filter, and a Min and Max filter.

It can be seen in Fig. 12, that the interfaces on both sides of
each module use the same equivalent wires, as previously
depicted in Fig. 12, which is the key property for module
chaining.

Figure 16 Fully implemented kernels, as shown in Xilinx’s FPGA
editor tool. The illustrated kernels are (l.t.r.) Brightness correction,
RGB to GreyScale, Skin Color Detection, Gaussian Blur, Sobel ED
filter, and Mean Filter.

7.2 Resource Utilization

The utilization of the generated kernels is shown in Table 1.
The overhead that occurred due to the modifications, which
are described in Section 5 is included in those numbers. The
additional implementation cost of each kernel is about 441
LUTs (mainly used for 512-bit wide and 32 positions deep
FIFOs which are implemented by distributed memory).
Note that in Table 1, the modules do not contain DSP
primitives, however, we fully support relocation of DSPs.

The static system consists of 9375 LUTs, 22 BRAMs
and has one input and one output of 512 bits for the image
operator’s I/O and one input for the ICAP Custom HDL
module. In the implemented example, the reconfigurable
region offers 28800 CLBs, 128 BRAMs, and 112 DSPs and
it is placed in the top right corner of the chip. This placement
was chosen because the static part and the connections are
placed in the center of the device next to the PCIe interface.

As a reference, we implemented a non-reconfigurable
full static (FS) design that provides all the aforementioned
kernels in parallel. This would correspond to a system
that runs all the aforementioned kernels in parallel. In this
system, the input can be streamed through all possible
kernels and back to the host machine, if needed. As
an alternative approach, a user can implement multiple
different projects and reprogram the device with the project
that contains only the filters needed, which, firstly, takes
time and secondly, in case of switching accelerators in most
real-world streaming applications (e.g., a video processing
platform), the operation of the system would be interrupted
for a significant amount of time. Additionally, there are
cases where a user may need to run a combination of
kernels in a pipelined fashion. However as the number of
possible kernel choices grows, it is not feasible to create
a design for every combination of kernels that can be
combined. Moreover, some filters could be mutual exclusive
to each other (e.g., Mean filter versus Gaussian filter), which
implies that hosting them both in a static solution would
result in an underutilized FPGA implementation.

Additionally, our framework offers the freedom to load
any kernel or any number of the available kernels, as long as
they fit into the reconfigurable region, and allow loading and
resetting in less than ten milliseconds. This is possible while
keeping the FPGA RAM active during reconfiguration and
idling only the reconfigurable region during the process.
The reconfigurable region used in our case study provides
only 10% of the FPGA resources and much more resources
can be allocated for the reconfigurable region, if needed.
Please note that a user can decide to only implement parts
of the system to be run-time reconfigurable, while leaving
other accelerator kernels static (e.g., if those kernels are
being used statically).
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Table 1 Resource utilization of
generated PRGroups and
Unique kernels.

Kernel LUTs BRAMs DSPs

Brightness correction 4444 1 0

RGB to Grayscale 6814 1 0

Sobel ED filter 26482 17 0

Gaussian blur filter 12659 17 0

Mean filter 12678 16 0

Skin Color Detection 9821 14 0

Minimum 4582 1 0

Maximum 4556 1 0

Mean + RGB 19292 17 0

Brightness + Skin 14358 15 0

Min + Max 9138 2 0

Example full static (FS) 92405 112 0

7.3 Compilation and Configuration Time

The Maxeler Compiler that translates MaxJ to VHDL works
relatively fast. For example, the tool provides the RTL
code description for all the example cases (including the
FS mentioned in the previous subsection) in between 10
to 20 minutes. After that step, the FPGA vendor tools
carry out the entire physical implementation until the final
configuration bitstream. The results for the compilation time
of our approach are shown in Table 2. The time metrics
include the time needed for RTL generation from Maxeler,
BBG, GoAhead and the whole toolflow from RTL synthesis
to bitfile generation. Thus, the tools have to implement 11
individual (unique kernels plus PRGroups) and significantly
smaller designs and another one for the static part. All 6
distinct parts (i.e. static system and 5 PRGroups of which 3

PRGroups contain 2 kernels each and 2 PRGroups contain
1 kernel each) together contain about the same logic, as
compared with the FS design, if they are combined. On the
contrary, the FS design needs 74 minutes from the RTL
generation to the finalMaxFile, or more than 25% additional
time. Please note that the compilation times for the partial
modules and the static system include a maximum cost of 10
seconds which is needed for the VHDL code processing and
project generation.

The reconfiguration time of all our modules is listed in
Table 2. As listed, each kernel takes from 3 to 6 ms for
configuration by the ICAP instance on the device. After
the configuration is done, we can execute the function
loaded by sending the image data from the DDR memory
or PCIe. This execution step remains the same as in the
static Maxeler approach. Each reconfigurable region can

Table 2 Time needed for
reconfigurable module
generation, the static part of
our reconfigurable module and
the full static design.

Kernel Compilation time (min) Reconfig. time (msec)

Brightness correction 25 3

RGB to Greyscale 27 5

Mean filter 30 6

Gausian blur filter 26 5

Sobel ED filter 43 5

Skin Color Detection 32 5

Minimum 27 3

Maximum 26 3

Mean + RGB 39 4

Brightness + Skin 38 4

Min + Max 31 4

Static Part 56 –

Resetting bitstream 1 10

Example full static (FS) 74 –

Compilation time does not include the RTL generation time. The FS design includes only the
Maxeler compilation time, as it is full static
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be resetted individually by generating a resetting bitstream
for each region and loading this file through the interface
C-code of the Maxeler project.

Finally, module relocation at run-time is done by the
BitMan tool.

For the stitching of the aforementioned kernels, BitMan
needs 10 to 20 seconds to generate the final relocated
bitstream for each possible kernel. In many practical
systems, this process could be carried out once and stored
for future configuration processes.

The current system is clocked at 100 MHz, which is the
default clock frequency set by Maxeler, hence providing a
peak performance of 6.4 GB/s on our 512-bit wide datapath.
This performance can be achieved by all pixel operators
implemented for our example case.The systemdoes include a
small penalty in latency for the single kernel designs,
as the reconfigurable region itself includes a pipeline
latency of a maximum of 5 clock cycles. For even higher
throughput, multiple reconfigurable regions may be used
in parallel (if permitted by the application). Considering
memory-to-memory streaming, it would require three
reconfigurable regions working on parallel to fully utilize
the aggregated memory bandwidth available through three
DDR-3 memory channels available on the used MAX3
system.

7.4 ExistingWork

Compared to the existing work on applying partial
reconfiguration techniques on the Maxeler platform, as
shown in the results of [12], the configuration time is
significantly slower than ours, as our bitstream with the
highest utilization (resetting bitstream with an area of 28800
LUTs) needs only 10ms to configure the reconfigurable
region, while for an area of 11764 LUTs the authors in [12]
need 400ms. The main reason for our faster reconfiguration
time is the fact that we use a faster configuration interface
(ICAP) that runs consistently at its 400MB/s maximum
configuration throughput, while in [12], the authors use
a different interface that is operated slower on Maxeler
systems.

However, the most important difference is that the
authors in [12] have not considered placing multiple
modules in a single region. This work suggests chaining
modules at compile time, but that would be prohibitively
slow for run-time adaptive systems such as database
acceleration where the exact chain of the modules is only
known at run-time. In addition, [12] does not consider
automatic placement, which is essential when introducing
a low-level implementation for non-FPGA experts. Lastly,
the authors mention that they use the Xilinx PR flow
for their proposed implementation. Thus, each kernel is
therefore hardwired in a region and cannot be replicated or

relocated. This makes sharing for more throughput much
more difficult.

8 Conclusion

This paper presented a complete framework around the
Maxeler platform that extends the current full static to
a dynamic dataflow approach. The paper presents a top-
down flow of our approach, starting from a language
extension that models the dynamic aspect of a system. The
presented work processes the Maxeler’s generated code and
the changes needed to implement a reconfigurable system
directly from the output of the MaxCompiler. Additionally,
clock speed was not found to be impacted by the presented
work, while latency is only impacted by 5 clock cycles.
Moreover, the reconfiguration time is significantly lower
than the time to reprogram the device with a different full
bitstream. Moreover, the whole PR design complexity is
entirely hidden from the user, as in the dynamic flow, users
will only have to write MaxJ and C code, exactly as it was
performed in the original Maxeler case for the full static
implementation. Last but not least, compared to the Xilinx
vendor PR tools, the proposed flow allows for multiple
kernels/functions to be placed in the same reconfigurable
region and the proposed flow guarantees independency
not only within the same project, but also across multiple
projects, given that we enable reusability of the generated
modules through a common physical interface.

The here presented flow can be used with other appli-
cations that can benefit from our dynamic HLS approach.
Every application that contains run-time mutually exclusive
applications can potentially be implemented and optimized
using our approach. In addition, applications that can not
fit in one device can also benefit from partial reconfig-
uration. For example, instead of cascading an application
across different FPGAs using Maxeler’s MaxRing protocol,
our approach enables a time-multiplexing of a single FPGA.
In this scenario, an application needs to be split into differ-
ent FPGA partitions and could be executed on one physical
FPGA using our dynamic approach for time multiplexing
(e.g. by using external RAM to buffer data between parti-
tions). The above statement is more critical if we consider
the comparison between the PCIe and the on board memory
bandwidth, which are, theoretically, 4GB/s (8 data trans-
fer lanes) and 36 GB/s (3 DDR3 memory channels of 12
GB/s each) respectively. Thus, such an application can be
split in kernel A and kernel B, which in turn will be imple-
mented as 2 partial bitstreams. With this, we can load partial
bitstream A, save the results in the on-board memory and
replace module A with module B.

Our work demonstrated that building a partially reconfig-
urable system could be performed by domain experts using
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only MaxJ and C code. We implemented our flow on a Xil-
inx Virtex 6 FPGA (i.e. the device used in Max3 systems).
The most recent release from Maxeler is Max5 based on
Xilinx UltraScale+ devices. As the Maxeler’s toolflow has
not changed significantly for the newest Max5 platform and
because all the external tools that we used have been tested
to work with UltraScale+ devices, porting the here presented
approach should be straight forward. This is planned as
future work, with the availability of Max5 hardware.
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