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Abstract
Long-Short Term Memory (LSTM) can retain memory and learn from data sequences. It gives state-of-the-art accuracy in
many applications such as speech recognition, natural language processing and video classifications. Field-Programmable
Gate Arrays (FPGAs) have been used to speed up the inference of LSTMs, but FPGA-based LSTM accelerators are limited
by the size of on-chip memory and the bandwidth of external memory on FPGA boards. We propose a novel hardware
architecture to overcome data dependency and a new blocking-batching strategy to reuse the LSTM weights fetched from
external memory to optimize the performance of systems with size-limited on-chip memory for large machine learning
models. Evaluation results show that our architecture can achieve 20.8 GOPS/W, which is among the highest for the FPGA-
based LSTM designs storing weights in off-chip memory. Our design achieves 1.65 times higher performance-per-watt
efficiency and 2.48 times higher performance-per-DSP efficiency when compared with the current state-of-the-art designs of
LSTM using weights stored in off-chip memory. Compared with CPU and GPU implementations, our FPGA implementation
is 23.7 and 1.3 times faster while consuming 208 and 19.2 times lower energy respectively, which shows that our approach
enables large LSTM systems to be processed efficiently on FPGAs with high performance and low power consumption.

Keywords LSTM · FPGA · Hardware architecture

1 Introduction

Recurrent Neural Networks (RNNs) can remember past
information so that they can improve the accuracy of future
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predictions, which makes them applicable to sequence
processing problems such as speech recognition [7, 16],
real-time control [33] and video classifications [34].
Developed to overcome the vanishing gradient problems
that can be encountered when training traditional RNNs,
Long Short-Term Memory (LSTM) networks have set
accuracy records in multiple application domains. Although
they have the benefits in accuracy, the typical four gates
in an LSTM cell also result in a high computational cost
during inference because each gate has its own weights and
biases. In recent years, FPGAs have been used to speed up
the inference of LSTMs [11, 15, 16, 31], which offer low
latency and low power when compared to CPUs or GPUs.

Although FPGA-based LSTM accelerators have advan-
tages in power consumption and latency, they are limited
by the size of on-chip memory and the bandwidth of exter-
nal memory on the FPGA boards. The situation is even
worse when we consider a small embedded system which
has a small on-chip memory and low memory bandwidth
while requires low power consumption. In many previ-
ous FPGA based implementations [12, 24, 27, 29, 30], all
the weights are stored in the on-chip memory, which not
only is expensive but also limits the size of models that
can be deployed. The size of weights for a typical single
LSTM layer with both input and hidden vector sizes as 512
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is around 33.6Mb when the data precision is 16-bit. This
size becomes 134.3Mb when both the sizes of the vectors
become 1024. However, the on-chip memory of an FPGA
is limited. The Xilinx Zynq 7045 FPGA only has 19.2Mb
while the Virtex 7 690T FPGA has 53Mb, which is insuffi-
cient to store a single LSTM layer with vectors of medium
sizes, such as 1024, as shown in Fig. 1. Increasing the size
of FPGA chip may help to store an entire LSTM layer in the
on-chip memory. However, a typical neural network may
have several LSTM layers or a large LSTM layer, which
makes the weights hard to be stored entirely in the on-chip
memory of an FPGA.

When an RNN model is so large that the weights must
be stored in an external DRAM, the performance will
be largely restricted by the transfer rate of the data. It
is not efficient since the fetched weights are typically
used only once for each LSTM inference. Besides, the
existence of data dependency in RNNs makes systems
stall in conventional designs as the systems need the new
computed hidden units vector to start the calculation of next
time-step.

This study aims to explore LSTM parallelism by
designing a novel blocking-batching strategy and a stall-
free hardware architecture to optimize the performance
of FPGA-based LSTM models that are too large to store
into the on-chip memory of FPGAs. To reduce external
memory access to save power and decrease latency, we
propose the a new blocking-batching strategy which splits
the matrix of weights into multiple blocks while batching
the input vectors so that calculations are able to be processed
block by block with weight reuse. Batching the input
vectors of activation for RNNs has been studied [2, 14,
29, 35] to improve the throughput, but little research
has so far looked into the combination of blocking and
batching targeting RNNs. Besides, we analyze the data

Figure 1 The sizes of weights for various LSTM layers and the
on-chip memory sizes of various FPGAs

dependency in the matrix-vector multiplication required by
LSTM, and the stall-free hardware architecture is proposed.
Some previous studies focus on weight pruning and data
precision reduction to reduce the size of LSTM models to
fit on-chip memory. These studies are orthogonal to our
proposed strategy and architecture. With our method and
novel hardware architecture, large LSTM systems can be
processed efficiently on FPGAs.

To the best of our knowledge, we are the first to propose
and implement a Stall-free Blocking-batching Engine (SBE)
with weight reuse for large LSTMs storing weights in the
off-chip memory of FPGAs. Here are our contributions in
this paper:

1. A new blocking-batching strategy reusing the LSTM
weights to optimize the throughput of large LSTM
systems on FPGAs.

2. A novel stall-free hardware architecture to reorder the
multiplications to hide data dependency and stalls,
which further improves the throughput of the system.

3. A performance model which enables a balance between
performance, power and area for FPGA designs with an
automation framework for our novel LSTM architecture
to improve productivity of application developers.

4. Evaluations of our LSTM accelerator in different
scenarios. The performance efficiency achieves 20.8
GOPS/W while the resource efficiency is 0.246
GOPS/DSP, which provides the leading published
results of FPGA-based LSTM systems storing weights
in off-chip memory.

This paper is an extension of [25]; compared with the
previous work, we include details of LSTM gate weights
matrix partition in Section 3.4 and a fine-tuning technique
with data quantization in Section 3.5, as well as an extended
performance model in Section 5.1 and new resource model
in Section 5.2. We also include a new automatic hardware
mapping framework for our LSTM architecture to improve
the productivity of application developers in Section 5.3. In
the evaluation section, the tuning of the blocking number
is extended in Section 6.3 and more comparisons to
previous work are added in Table 4. Finally, some additional
publications are discussed in Section 2.

2 PreviousWork

There has been much previous work on FPGA-based
LSTM implementations whose weights are stored in on-
chip memory. In contrast to convolutional neural networks
(CNNs), whose architectures allow massive parallelism by
the reuse of filter weights [8, 10], RNNs/LSTMs are harder
to be accelerated on hardware due to their high complexity
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and temporal dependency. In [11], an FPGA accelerator of
LSTM is proposed for a learning problem of adding two
8-bit numbers using weights stored in on-chip memory.
Rybalkin et al. [30] are the first to propose and design
a BiLSTM hardware architecture for OCR with weights
storing in on-chip memory. In their later work [29], FINN-
L employs 1-8 bits as the quantized implementation which
is able to surpass single-precision floating-point accuracy
for a given dataset. However, the weights are still stored
in on-chip memory. C-LSTM [32] is proposed to reduce
LSTM inference weight matrices using the block circulant
matrix. In [12], Microsoft proposes a Brainwave variant
which is a single-threaded SIMD architecture for RNNs. Its
idea is pinning the model weights into on-chip memory in
order to achieve high memory read bandwidth to support
high performance for RNNs. In [24], a Brainwave-like
Neural Processing Unit (NPU) is implemented. They also
propose TensorRAM for persistent data-intensive RNN
sequence models. An E-RNN framework [20] is introduced
to improve performance/energy efficiency under accuracy
requirement with ADMM-based training for deriving block-
circulant matrice-based RNN representation. In [26] a
novel Timestep(TS)-buffer is introduced to avoid redundant
calculations of LSTM gate operations to reduce system
latency. In [27], the authors propose a novel latency-hiding
hardware architecture based on column-wise matrix-vector
multiplication to eliminate data dependency, improving the
throughput of systems of LSTM/GRUmodels. These LSTM
implementations store all the weights in on-chip memory
of FPGAs. However, it is expensive and limits the size of
models which are deployed since the on-chip memory is
limited.

Many studies are focusing on weight pruning and model
compression to reduce the size of weights so that the
whole LSTM model can be stored in the on-chip memory
to achieve good performance and efficiencies because of
high memory bandwidth. In [16], the authors propose a
pruning technique which compresses a large LSTM to fit
the on-chip memory of an FPGA and improves inference
efficiency. While in [13], DeltaRNN is proposed. It is based
on the Delta Network algorithm which skips dispensable
computations during inference of network. The authors in
[3] propose Bank-Balanced Sparsity (BBS) which is able to
both maintain model accuracy and enable an efficient FPGA
accelerator implementation. These studies are orthogonal to
our proposed strategy and architecture. We provide another
approach which employs the blocking-batching technique
with the stall-free hardware architecture to optimize the
throughput of LSTM networks on FPGAs.

There have also been many previous studies of LSTM
implementations storing weights in off-chip memory on
FPGA devices. Chang et al. [4] presents a hardware

implementation of LSTM using Xilinx Zynq 7020 FPGA.
Both the weights and input data are quantized to 16-bit
and stored in off-chip memory which is the performance
bottleneck. The authors in [15] propose to use on-chip
double buffers and develop a smart memory organization
to overlap data transfers with computations. Later they
propose an automated framework named FP-DNN [14]
to map CNNs or RNNs on FPGA devices. LSTMs are
processed using matrix multiplication kernel. However, they
[14] do not explore the issues of data dependency in
LSTMs.

In [2, 14, 29], the batching technique is proposed to
increase the throughput of LSTM inferences. However, a
large on-chip memory is still needed to store all the weights
for efficient calculation without a proper blocking method.
Otherwise, high bandwidth memory is required, like in the
ASIC platform [2]. Besides, a framework which deploys
an approximate computing scheme using small tiles,
together with a novel hardware architecture for FPGA-based
LSTMs, is presented in [28] which focuses on latency-
critical applications. The work in [21–23] compares neural
networks implemented on CPU, FPGA, GPU and ASIC and
shows FPGA can provide superior performance/Watt over
CPU and GPU.

In [36], Zhang et al. implement Long-term Recurrent
Convolutional Network (LRCN) [6] on FPGA. However,
the feature number, which is the length of LSTM input
vector, has been reduced from 4096 to 256. This reduction
prevents the system from working with large models
and limits the effectiveness of RNN models. With our
blocking-batching strategy and hardware architecture, small
FPGAs are still able to run large RNN models efficiently.
In particular, this work focuses on the FPGA-based
acceleration of large RNN models whose weights are stored
in the external memory of FPGA devices.

3 LSTM: Design and Optimization

This work mainly optimizes the Matrix-Vector Multiplica-
tions (MVM), which have complex data dependencies in
LSTMs, for high throughput as most of the calculations
of LSTM cells lie in the MVMs. The element-wise opera-
tions in the LSTM tail are able to run under the shadow of
the matrix-vector multiplications in our pipelined design. In
this section the basic of LSTM theory is first introduced.
Then, an improved architecture is proposed to reorganize
the multiplications to optimize the data dependency and
remove stalls, which enhances the system throughput. Fur-
thermore, a novel blocking-batching strategy is introduced
which reuses the LSTM weights to increase the throughput
of large LSTM systems on FPGA devices.
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Figure 2 Structure of an LSTM
Cell

3.1 LSTM Theory

The Long Short-Term Memory (LSTM) networks are
based on Recurrent Neural Networks (RNN). It was
initially proposed in 1997 by Sepp Hochreiter and Jürgen
Schmidhuber [17]. The LSTM architecture, as shown in
Fig. 2, relies on dedicated memory cells to store information
about long-term dependencies over an arbitrary time period,
which is well suited for processing time series data.

The standard LSTM as shown in [6, 15] is imple-
mented in our work. The hidden state ht is produced
by the following equations, where � is element-wise
multiplication:

it = sigmoid(Wi[xt , ht−1] + bi)

ft = sigmoid(Wf [xt , ht−1] + bf )

ut = tanh (Wc[xt , ht−1] + bu)

ct = ft � ct−1 + it � ut

ot = sigmoid(Wo[xt , ht−1] + bo)

ht = ot � tanh(ct )

i, f, u and o represent the input gate, the forget gate, the
input modulation gate and the output gate respectively. The
input modulation gate is often considered as a sub-part
of the input gate. The input vector and hidden vector are
combined so that W represents the weights matrix for both
input and hidden units. Bias is represented as b.

The gates control the information flow inside the LSTM
unit. The input gate decides which elements will enter the
memory cell; the forget gate decides which elements are no
longer remembered; the input modulation gate decides if the
memory cell needs an update; the output gate decides which
elements from the memory cell are output. The output ct is
the internal cell state and ht is the output of the cell, also
called the hidden state, which is passed to the next time-step
or next layer. Our work focuses on the optimization of the
standard LSTM, but the proposed techniques can be applied
to other RNN and LSTM variants.

3.2 Overcoming Data Dependency

The conventional matrix-vector multiplication implementa-
tion involves the entire vector of (xt , ht−1) and a whole
row of the weights matrix at a time. However, additional
stalling is introduced since the system needs to wait for the
new computed hidden units vector before it starts the next
time-step calculation. This is mainly due to the data depen-
dency between the output from the current time-step and the
vector for the next time-step as shown in Fig. 3, where Wx

and Wh represent the weights for the input vector and the
weights for the hidden vector respectively. This implies the
whole system pipeline needs to be emptied to get the new
computed hidden units vector so that the new calculation of
matrix-vector multiplications can start.

To alleviate this problem, we propose a new technique
which calculates the matrix-vector multiplications in a
unique manner. In the beginning, only a few elements from
the xt vector are involved while ht−1 is not touched, but
all the corresponding columns within the weights matrix
are involved to run the calculation, as shown in Fig. 4. The
number of elements involved in the xt vector each cycle
depends on the parallelism of the system. This number may
be just one. In this way, the calculation of the new inference
which involves (xt+1, ht ) can start without waiting for the
system pipeline to be emptied to get the ht . It means that
the system can be fully pipelined without stall and each

Figure 3 Matrix-vector multiplication, showing the data dependency.
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Figure 4 New matrix-vector multiplication method using columns

hidden vector can finish the computation in the shadow of
processing xt vector before it is touched.

3.3 Novel Blocking-Batching Strategy

Many existing FPGA based LSTM designs share the same
problem where all the weights need to be stored internally
because of the long latency to the external memory. This
approach is impractical for large machine learning models
or small FPGAs. Even after weights pruning and model
compression, the designs may still suffer from insufficient
on-chip memory because of large compressed models.

To solve this problem, we propose a novel technique
which splits the weights matrix into multiple blocks while
batching the input activation vectors so that we can process
the calculations block by block and reuse the weights.
There has been much work about improving the throughput
by batching input activation vectors for RNNs. However,
little research looks into the combination of blocking and
batching targeting RNNs. This technique can be used
for a general LSTM model or incorporated with the
technique proposed in Section 3.2. It may be similar to
classic Block Matrix Multiplications (BMM), however our
proposal also considers the data dependency within LSTMs.
With multiple vectors organized in a batch, the system
can now reuse the same weights for the new matrix-vector
multiplications in the next time-step. Since external memory
accesses are expensive we design to decrease the number
of loads from external memory. Our approach can reuse
the weights for several input vectors before reloading new
weights from external memory. This approach is especially
useful for embedded systems where FPGA size and memory
resources are both limited.

Typically the transfer time of the weights is much
larger than the computation time in LSTM inferences.
By processing multiple time-steps of the input vector in
a batch, we can use the weights multiple times before

reloading, which reduces the number of external memory
accesses. Assuming the number of processing elements
is fixed, increasing the batch size will also increase the
computation time. We can find a batch size such that the
computation time is equal to or larger than the transfer time
so that the memory latency can be hidden. In this way,
we convert memory-bound applications to compute-bound
ones and increase performance. Besides, a double buffering
architecture is proposed to store two blocks on chip. Whilst
calculating one block, the other block can be transferred to
maximize performance and efficiency by reducing the time
of stalling.

3.4Weights Matrix Partition

In our design, the matrix of weights contains gate-weights
from all kinds of gates in LSTM and these weights are
interlaced within the matrix. For example, the first four rows
of our weights matrix are respectively the first row of the
weights matrix for input gate, input modulation gate, forget
gate and output gate, as shown in Fig. 5. Thus, in one time-
step for the LSTM algorithm, we only need to focus on
optimizations of one large matrix multiplying one vector
for the whole LSTM cell instead of four small matrices
multiplying one vector which is decentralized. Besides, the
weights matrix is sliced along the column and the number
of rows is the same as the number of rows in the weights
matrix. Thus, each block contains weights from all the
LSTM gates for increasing design parallelism.

Figure 6 The system overview
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Figure 5 Blocking of the
weights matrix and input
activation vectors

3.5 Data Quantization and Fine Tuning

Numerous prior efforts [16, 29, 30] have shown that LSTMs
are robust to low bit-width quantization. Instead of using
double or single precision floating-point representations,
fixed-point precision can be used in FPGA-based LSTM
accelerators to achieve higher performance and power
efficiency. To keep the accuracy and avoid data overflow,
we use partial quantization [8] to extend the bit-width of
intermediate data. In this work, a 16-bit fixed-point data
format is proposed to implement the multipliers in the
LSTM gates while the accumulators after the multipliers
are 32-bit. The multipliers and adders in the element-wise
operations and batch normalization are both 32-bit.

Quantization-aware fine-tuning [18] is applied to our
quantized LSTM to recover accuracy. The gradient, weight,
activation tensors are stored in floating-point format.
To emulate the quantization error, all the operations
are performed in fixed point arithmetic. Therefore, the
conversation between floating-point data and fixed-point
data is applied before and after each operation to match
the data format. With the help of quantization-aware fine-
tuning, we evaluate the performance and power efficiency
of the proposed LSTM accelerator using real-time video
activity recognition on UCF101 dataset [19], and there is no
accuracy loss.

4 System architecture and Implementation

4.1 SystemOverview

Figure 6 shows the overall system on an FPGA board while
the Stall-free Blocking-batching Engine (SBE) is illustrated
in Fig. 7. This system is composed of SBE units, DMA
units, a CPU and a DDR3 DRAM as the external memory.
All the LSTM weights and input activation vectors which
are image features extracted from CNN layers are stored in
the external memory. The control commands are transferred

by the Reg Ctrl unit using the AXI4-lite bus. The DMA units
manage the data communication and they are connected
to the PCIe bus or AXI4 bus. The CPU is used to send
configurable parameters to the SBE and it controls the
transmitting of the weights and receiving the results after
the hardware finishes processing.

4.2 SBE Architecture

Figure 7 shows the details of the SBE architecture. As
mentioned, we only transfer one block from the off-chip
memory to the FPGA on-chip memory in each iteration of
computation. The partial weights will be stored in buffer0
and buffer1 which work as a double buffer. Besides, the
partial batch size input x vectors of activation are also
stored in a double buffer. These buffers work together to
enable parallel operation of data communication and LSTM
inference computation with a carefully chosen block and
batch size.

PEs — The LSTM gate operations (matrix-vector multi-
plications) are performed in the Processing Element (PE)
units. One element is chosen from the partial input vec-
tor and multiplied by all the corresponding weights. The
partial results of one activation are accumulated via the
Inter-Block link as shown in Fig. 7, and is finally stored
into the small Blocking-Batching(BB)-FIFO to be read in
the computation of the next block. Each partial activation
vector in the batch generates one result and is stored in the
BB-FIFO. Therefore, the depth of the BB-FIFO is equal to
the batch size.

PPs — The other operations after the matrix-vector
multiplications in the LSTM cell are processed in the Post
Processing (PP) units. Their parallelism is configurable to
reduce the latency and improve the performance depending
on the available FPGA resources. The batch normalization
(BN) [5] unit, which is optional and can be turned off via the
controller, performs batch normalization on the results from
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the matrix-vector multiplications. The Sigmoid/Tanh are the
non-linear modules which apply the activation functions.
We implement these activation functions using piece-wise
linear approximation [1], which is shown to have little
impact on accuracy during LSTM-RNN inference [15]. The
results will be placed in the output buffer, waiting to be
transferred via DMAs.

4.3 Consolidating after Blocking

The main issue of blocking is how the system consolidates
the partial results. In our architecture, BB-FIFO in the PEs
is utilized to consolidate the block computations. When a
new block starts computation, the entry in the BB-FIFO is
read via the Exter-Block link and used as an initial value for
the accumulator. After the new block finishes computation,
the partial results of the new block are accumulated into the
former partial results and finally stored into the BB-FIFOs.
When all the blocks are processed, the final result across all
blocks from the current batch will be passed to the LSTM
Interconnection unit as shown in Fig. 7, where they will be
reshaped for later processing.

Table 1 Blocking-Batching Parameters.

Mop Number of matrix operations

Npe Number of processing elements

Nt Number of elements transferred each cycle

Nb Number of blocks

Lx, Lh Number of elements in x and h vectors respectively

α Lx/(Lx + Lh)

B Batch size

P 1 Perf ormance/(2 × f requency)

1performance is in terms of throughput while 2 means each data
element needs both multiplication and accumulation operations

Figure 8 Timing diagram for Case 1

5 PerformanceModel and Hardware
Mapping Framework

5.1 PerformanceModel

Generally, there are three cases which involve the proposed
blocking-batching strategy:

1. The hidden unit weights can be stored in one block
2. The hidden unit weights can be stored in two blocks
3. The hidden unit weights can be stored in more than two

blocks

We define a few parameters as shown in Table 1 for later
calculations. Ideally we would like the calculation time for
each block to be equal to the transfer time, but in reality
usually one is significantly longer than the other. Let us
assume the calculation time for one block is longer than the
transfer time for one block.

Calculation Time ≥ Transfer Time

MopB

NbNpe

≥ Mop

NbNt

=⇒ B ≥ Npe

Nt

(1)

This gives us the constraint B ≥ Npe

Nt
when the

calculation time is greater than or equal to the transfer time.
Similarly we can derive the constraint B <

Npe

Nt
when

calculation time is less than the transfer time.

Case 1 — In this case when the hidden unit weights can be
stored in one block, the performance is almost dictated by
having to store all weights in the on-chip memory. If the
maximum performance is Pm, then this case can achieve
Pm. This is due to the novel stall-free blocking-batching
architecture that ensures we are always calculating without
stalling.

The ideal timing diagram for this case is shown in Fig. 8,
where there is no idle time. T0 is transfer time for Block0
while C0 is computation time for Block0. As shown in
Fig. 8, C0 can start when T0 has finished. In practice, we
find that there are some special cases where we must stall
the pipeline to wait for the final block to finish calculating.
Normally we can ignore the system latency because we
can start processing the x part of the final block before we
reach the h elements, as illustrated in Fig. 4; by the time we
reach the h elements they will be ready. If the hidden input
vector occupies a large amount of the block, then we will
have to wait for the system pipeline to finish processing the
last vector, which will cause stalls. We find that these stalls
cause the calculation of the final block to take about 10%
longer time. The calculations below consider the simple
case when there are no stalls.

We can calculate the effect on performance by consider-
ing the total number of operations that must be done against
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Figure 7 The Details of Stall-free Blocking-batching Engine (SBE) Architecture

the time spent. The performance depends on the time we
spend transferring each block versus the calculation time of
each block, as shown in the following equations and Fig. 9.

P = MopB

MopB

Npe

= Npewhen B ≥ Npe

Nt

(2)

P = MopB

Mop

Nt

= BNtwhen B <
Npe

Nt

(3)

The blocking number, Nb, can be increased to reduce the
on-chip memory needed. Due to storing two blocks on-chip,
we only need 2

Nb
as much memory as storing all weights

on-chip. This means we can process a model many times
larger, or process the same model using a fraction of the on-
chip memory. There are indeed some drawbacks, such as
increasing the block size, which are covered in cases 2 and
3.

Case 2 — In this case when the hidden unit weights can
be stored in two blocks, we must wait until both of the last
blocks to be cached in the on-chip memory before starting
computation, because the next hidden vector in the batch
has a dependency on the previous one. Figure 10 shows the
timing diagram for this case, where the red arrows indicate
the extra time we must wait.

In theory, there is a small overlap at the beginning where
we can begin to compute the first sub-vector, and also at

the end when we can start transferring while working on the
last sub-vector in the last vector of the batch. Since this is
equal to doubling the time to process one sub-vector, it will
be negligible compared to the total time and we shall leave
this out of our approximations.

The performance calculation is done in a similar way
when B = Npe

Nt
; we consider that each matrix element must

be transferred and the transfer time is equal to the time for
processing all the Mop, but the hidden weights also have the
added processing time which takes up 2 blocks out of all Nb

blocks.

P = MopB

MopB

Npe
+ 2MopB

NbNpe

= NpeNb

Nb + 2
(4)

Case 3 — In the most complex case when the hidden unit
weights can be stored in more than two blocks, we have
multiple blocks due to a large LSTM model and/or a small
FPGA. In this case the hidden vector will be split across
more than two blocks, so we cannot store it all on-chip at
the same time.

Due to the data dependency between sub-vectors, we
must reload the last few blocks where the hidden vector is.
This must be reloaded Nb number of times to finish each
vector in the batch.

The performance calculation is more complex but
follows the same pattern as before. We consider each case,
when the xt input and weights take longer to transfer, then

Figure 9 Roofline performance
model for Case 1&2 (left) and
Case 3 (right).
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Figure 10 Timing diagram for Case 2.

αMop

Nt
is larger than αMopB

Npe
as shown in equation (6), or

when the calculation takes longer than αMopB

Npe
as shown in

equation (5). Conversely, the hidden input and weights need
more time to transfer since each calculation is only one
sub-vector from the batch, yet all the weights need to be
transferred each time, as shown in Fig. 11 The final roofline
model is shown in Fig. 9.

p = MopB

αMopB

Npe
+ (1−α)MopB

Nt

= NpeNt

αNt + (1 − α)Npe

, B ≥ Npe

Nt

(5)

p = MopB

αMop

Nt
+ (1−α)MopB

Nt

= BNt

α + (1 − α)B
, B ≤ Npe

Nt

(6)

Although this case seems to offer poor performance
because of the limitation of memory bandwidth, we should
note that this is similar to the standard method without
processing using columns. We would need to load each
block into memory B times and each sub-vector would be
processed individually. With our new architecture, we re-
use the weights as much as possible for the independent
part of the vector, and only need to reload the weights for
the dependent part of the vector with the hidden weights.
Furthermore, if there are more on-chip memories on the
target FPGA, then this case will be become Case 1 which is
compute-bound with high performance.

5.2 Resource Modelling

FPGA-based LSTM accelerators are constrained by two
types of resources: one is the logic resources such as
LUTs and DSPs, the other is the memory resource i.e. the
BRAMs. Based on [9, 37], DSPs are the limiting resource
for the computation engines. Therefore, only DSP usage is
considered in this category. In our design, fixed-point adders
are implemented using LUTs in order to save DSPs since
the adders consume much fewer LUTs compared to those of
multipliers and considering the available LUTs are far more
than DSPs in an FPGA. Let Dmul represent the number of

DSP usage of one multiplier, so the total number of required
DSPs is Npe ∗ Dmul .

The memory resources are mainly occupied by the dual
buffers and BB-FIFOs and their usage is given by:

BRAMNum = (Lx + Lh) ∗ (4Lh + B) ∗ DW ∗ 2/Nb + B ∗ Npe ∗ DW

BRAMsize

(7)

Practically, BB-FIFO can be implemented using LUTRAM
in order to save BRAMs when the entry of each BB-FIFO
is small. If so, the term of B∗Npe∗DW

BRAMsize
in equation (7) can be

omitted.

5.3 Framework of Automatic hardware Mapping

This section presents Blocking-Batching(BB)-LSTM, an
end-to-end LSTM framework to enable effective deploy-
ment of applications on FPGA by replacing standard LSTM
layers with an efficient configurable LSTM template writ-
ten in Verilog. It optimizes parameters of the proposed
SBE hardware based on users’ constraints to enable design
space exploration to meet design requirements. In addition,
it automatically reads model configuration files and coeffi-
cient data files to map a high-level model into an FPGA-
based accelerator for inference to reduce the development
effort.

The overall BB-LSTM framework is shown in Fig. 12.
After users create a network model using the Keras API in
TensorFlow with a satisfactory accuracy, the network con-
figuration and coefficients can be exported as a JSON file

Figure 12 BB-LSTM framework.
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and an HDF5 file respectively. BB-LSTM reads both files
about this model and the parameters of the targeted FPGA
platform with the user requirements for performance or
area. Then it evaluates the performance of the combinations
based on the above LSTM performance model described
in Section 5.1 and the optimized parameters including the
best batching size, blocking number, LSTM case values are
generated. These optimized parameters will be compared
with the input to check if the available resources from the
targeted FPGA platform meet the requirements. If accept-
able, the parameters will be used in the hardware generation
to produce the FPGA designs based on the hardware RTL
templates.

6 Evaluation

6.1 Experimental Setup

LSTM has many variants that target different applications.
In our work, we choose the LRCN [6] which covers video
activity recognition to demonstrate our approach. Generally,
the LRCN is implemented using a CNN to extract a fixed-
length feature vector which is passed to a recurrent sequence
learning component, such as an LSTM. In this work, we
choose the features of each video frame from the average
pool layer of an Inception-v3 model which has been pre-
trained on the ImageNet data-set. One additional Fully
Connected (FC) layer is used to produce 1792 features
which are then fed to our LSTM system. We retrain the
LSTM network to get the top-1 accuracy of 72.97% and top-
5 accuracy of 89.61% which are higher than the accuracy of
67.37% in the original LRCN design [6].

To demonstrate the performance and limitations of the
proposed LSTM hardware acceleration, we implement the

hardware system for the LSTM part in LRCN for the RGB
model, where the LSTM-256 model has 256 hidden units.
Each LSTM-256 gate weights matrix is 2048*256 and there
are four gates. The target platform is Xilinx ZC706, which
consists of an XC7Z045 FPGA and a dual ARM Cortex-A9
processor. 1 GB DDR3 RAM is included in the platform as
off-chip memory. There is only 19.2 Mb on-chip memory
on the XC7Z045 FPGA while the weights in this LSTM
model are more than 32Mb which are too large to store
in the on-chip memory of this FPGA device. Thus, the
weights have to be stored in the off-chip memory and reused
in a smart way. We also implement the LSTM-512 model
which has 512 hidden units using the Virtex 7 VX690T
FPGA.

6.2 Resource Utilization

The resource utilization is shown in Table 2 for our SBE
design on the Zynq 7045 FPGA. The number of PEs, Npe,
is set to 1024 targeting LSTM-256 while the batch size is
tuned to 64. Nt is 16 when the DMA data bus is 256-bit
and the LSTM datapath is 16-bit. If the DMA data bus is
512-bit then the proper batch size is 32 and this does not
change the resource utilization of BB-FIFO because each
LUTRAM is 64 bits. Nt needs scaling if the DMA data
bus works under a different frequency with computation
engines. The number of PPs is 4. For our system on Zynq,
almost all the FPGA’s hardware resources are used. A few
multiplication units are implemented using LUTs because
there are only 900 DSP elements in our system. Note that
there are 2048 PEs for 2048 for LSTM-512 targeting Virtex
7 VX690T FPGA because this device has an abundance of
DSPs.

Figure 11 Timing diagram for
Case 3.
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Table 2 Resource utilization.

LUT LR1 FF BRAM DSP

Z2 Avail. 219k 70k 437k 545 900

Used 166k 49k 150k 517.5 900

Utili. 75.8% 69.9% 34.4% 94.9% 100%

V3 Avail. 433k 174k 866k 1470 3600

Used 204k 71k 222k 1070 2060

Utili. 47% 41% 25.6% 72.8% 57%

1LUTRAM
2Zynq 7045
3Virtex 7 690T

6.3 Design Parameter Tuning

The idea is to tune the design parameters mentioned above
to achieve the optimal performance for the proposed LSTM
accelerator.

Batch size tuning The best batch size is determined by
balancing the computation time and communication time
from the off-chip memory to on-chip memory. For Case 1
and 2, the best batch size on Zynq can be easily calculated
from equation (1), which shows that B = Npe/Nt = 64.
However, for Case 3, the performance equations (5) and (6)
are complex, but we can still get 64 as the proper batch
size, as illustrated in Fig. 9. The performance is not related
to B when B ≥ Npe

Nt
as shown in equations (2) and (5),

which means increasing the batch size does not increase
performance beyond a certain point, but only wastes the
on-chip memory.

Blocking number tuning Since only two blocks are stored
on the FPGA, when the blocking number increases, the
block size decreases, and then the required on-chip memory
decreases for a given LSTM model. This means a large
LSTM system can be processed efficiently even with a
small FPGA. However, as we discussed in Section 5.1 the
blocking number cannot be too large for a given system
as performance can be reduced as shown in Case 3. The
LRCN performance with different blocking numbers on the
Xilinx ZC706 platform is shown in Fig. 13. Pm is the ideal
performance when all the weights are stored in the on-chip
memory without external DRAM accesses. It is the highest
performance that the system can achieve. From Fig. 13, the
proper blocking number is 16, which is the sweet point with
only 1/8 on-chip memory required compared to previous
research which put all the weights in the on-chip memory.
It is the best trade-off between on-chip memory size/usage
(or FPGA device) and performance. For a given application
and performance requirement, the proper blocking number

and blocking size will help us to choose the proper FPGA
device. We do not need to select a large and expensive
FPGA with large on-chip memory before the blocking-
batching strategy is applied. When the blocking number
decreases from 16 to 8, the performance can still be boosted
by about 10%. However, a larger and more expensive FPGA
with double the amount of on-chip memory will be required.
Furthermore, if users can tolerate reduced performance then
they can choose a smaller and cheaper FPGA as shown in
Fig. 13.

6.4 Performance and Efficiency Comparison

To compare the performance of the proposed design on
FPGA with other platforms, we implement the LRCN on
Intel Xeon E5-2665 CPU and NVIDIA X Pascal GPU based
on Tensorflow(r1.12) framework. The CuDNN libraries are
used for optimizing the GPU solution. Both CPU and GPU
implementations run with batch size set to 32 samples
with 1024 frames in total. Compared with the LRCN on
CPU and GPU, our Zynq FPGA design achieves the same

Figure 13 Throughput vs Blocking Number on ZYNQ 7045.

975J Sign Process Syst (2020) 92:965–979



Table 3 Performance comparison of the FPGA design versus CPU and GPU.

CPU GPU This Paper This Paper

Platform Xeon E5-2665 TITAN X Pascal Virtex 7 VX690T Zynq 7Z045

Frequency 2.4 GHz 1.6 GHz 125 MHz 142 MHz

Technology 22 nm 16 nm 28 nm 28 nm

Power(W) 93 159 26.5 10.6

Precision 32 bit float 16 bit fixed

Model Size per Frame1 81921 * 256

Time per Sample2 (ms) 14.45 0.78 0.38 0.61

Energy per Sample2 (mJ) 1343 124.02 10.05 6.47

1Combing the four matrices of i, f, o, u gates
2Each sample/video has 32 frames

accuracy. Besides, our design is 23.7 and 1.3 times faster
and consumes 208 and 19.2 times less power respectively as
shown in Table 3.

Parameterizable performance scaling for various LSTM
sizes and batch sizes is demonstrated and shown in Fig. 14.
With very large LSTM models, our design can achieve
1.60-5.41 times higher performance than the ones without
SBE, as shown in Fig. 15. In addition, Fig. 13 shows the
performance scaling for different blocking numbers. These
results show the customizability of our architecture for
various scenarios.

Some existing FPGA-based designs of LSTM acceler-
ators are compared with ours in Table 4 to illustrate the
benefits of our proposed approach. For a fair comparison,
we only show the previous work involving detailed imple-
mentation of the LSTM system storing the weights in the
external memory of FPGA. The table lists the FPGA chips,
model storage, precision, run-time frequency, throughput,
power efficiency and resource efficiency. It contains a
range of designs across this parameter space for compar-
ison. Because of our novel architecture which can reuse
the fetched weights and reduce off-chip memory access,
our design achieves power efficiency of 20.84 GOPS/W

Figure 14 Throughput depending on batch size on ZYNQ 7045.

and resource efficiency of 0.246 GOPS/DSP which are the
highest with respect to state-of-the-art FPGA implementa-
tions of dense LSTMmodels with weights stored in off-chip
memory. With a similar number of DSP resources to [14],
our system using Virtex 7 achieves 356 GOPS which is the
highest performance among all the FPGA implementations
of LSTMs storing weights the off-chip memory. Because
of routing congestions, our Virtex 7 design only runs at
125MHz. We believe that our implementation can achieve
higher operating frequencies with further low-level opti-
mizations. However, we leave that for future work since it
has a very limited impact on the conclusions we draw from
our study in this paper.

Note that our comparison does not cover recent
approaches [3, 13, 29] about LSTM acceleration adopting
model compression and weight pruning to make the best
use of on-chip memory. Such techniques are orthogonal
to our proposed approach. Future work will explore how
these techniques can further enhance the effectiveness of the
proposed approach.

Figure 15 Throughput of our design v.s non SBE design for very large
LSTM systems on ZYNQ 7045.
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Table 4 Comparison with previous implementations of Dense LSTM models storing weights on off-chip memory.

Chang [4] Guan [15] ESE [16] FP-DNN [14] This Paper This Paper

FPGA Zynq Virtex 7 Kintex Stratix V Virtex 7 Zynq

7Z020 VX485T KU060 GSMD5 VX690T 7Z045

Model Storage off-chip

Prec. (bits) 16 32a 12 16 16 16

32a

DSP Number 220 2800 2760 3180b 3600 900

Freq. (Mhz) 142 150 200 150 125 142

Perf. (GOPS) 0.47 7.26 282c 316 356 221

86a

Power Effi. 0.268 0.37 6.87 12.63 13.48 20.84

(GOPS/W) 3.44a

Resource Effi.d 0.002 0.003 0.102 0.099 0.099 0.246

(GOPS/DSP) 0.027a

aFloating point
bOne Intel FPGA DSP includes two 18*18 multipliers
cDense Model
dTo make a fair comparison, the total number of DSP in device is used to calculate GOPS/DSP when evaluating LSTM accelerator

7 Conclusions and FutureWork

In this paper, we propose a Stall-free Blocking-batching
Engine (SBE) architecture with a framework of automatic
hardware mapping for optimizing the inference design of
large LSTMmodels on FPGAs. The proposed accelerator is
implemented using Zynq and Virtex-7 FPGAs and achieves
excellent performance and efficiency, which shows the
effectiveness of our approach. Further research includes
combining the proposed SBEwith pruning methods to allow
large, sparse models to run on small embedded FPGAs.
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