
Decomposition algorithms for solving NP-hard problems on a

quantum annealer

Elijah Pelofske, Georg Hahn, and Hristo Djidjev

Los Alamos National Laboratory

Abstract

NP-hard problems such as the maximum clique or minimum vertex cover problems, two

of Karp’s 21 NP-hard problems, have several applications in computational chemistry, bio-

chemistry and computer network security. Adiabatic quantum annealers can search for the

optimum value of such NP-hard optimization problems, given the problem can be embed-

ded on their hardware. However, this is often not possible due to certain limitations of the

hardware connectivity structure of the annealer. This paper studies a general framework for

a decomposition algorithm for NP-hard graph problems aiming to identify an optimal set

of vertices. Our generic algorithm allows us to recursively divide an instance until the gen-

erated subproblems can be embedded on the quantum annealer hardware and subsequently

solved. The framework is applied to the maximum clique and minimum vertex cover prob-

lems, and we propose several pruning and reduction techniques to speed up the recursive

decomposition. The performance of both algorithms is assessed in a detailed simulation

study.

Keywords: Decomposition algorithm; D-Wave; Maximum clique; Minimum vertex cover; NP-

hard; Optimization.

1 Introduction

Novel computing technologies allows one to search for solutions of NP-hard (graph) problems

that are very hard to solve classically (Chapuis et al., 2017). One such device is the quantum

annealer of D-Wave Systems, Inc. (D-Wave, 2016), which can propose approximate solutions of

quadratic unconstrained binary optimization (QUBO) and Ising problems given by the minimum

of a function of the form

H(x1, . . . , xn) =
n∑

i=1

aixi +
∑
i<j

aijxixj . (1)

In (1), the coefficients ai ∈ R, i ∈ {1, . . . , n}, are linear weights and aij ∈ R for i < j are

quadratic weights. The problem (1) is called a QUBO problem if xi ∈ {0, 1} and an Ising problem

if xi ∈ {−1,+1} for all i. The function (1) is often called a QUBO or Ising function, respectively.

The formulation in (1) is general enough to allow all NP-hard problems to be formulated as

minimizations of such a function (Barahona, 1982). Both QUBO and Ising formulations are

1

ar
X

iv
:2

00
9.

06
72

6v
1

 [
qu

an
t-

ph
]

 1
0

Se
p

20
20

equivalent (Barahona, 1982; Choi, 2008; Lucas, 2014; Djidjev et al., 2016). The D-Wave quantum

annealer aims to find a minimum of the function (1) by mapping it to a physical quantum system,

from which a solution is read off after hardware-implemented annealing is completed. In such a

mapping, linear weights are mapped onto qubits and quadratic weights are mapped onto links

between qubits called couplers. Moreover, if ai and aj are mapped onto qubits qi and qj , then

aij is mapped onto the coupler connecting qi and qj .

However, directly computing a minimum of a given function of type (1) on a quantum

annealer is often not possible due to a variety of reasons: first, there is a limitation on the input

problem size that can fit on the quantum hardware due to the finite number of available qubits

(up to roughly 2000 qubits for the newest D-Wave 2000QTM computer). Second, even if the

number of qubits exceeds the number of variables, the current (D-Wave) technology provides

only limited qubit connectivity (D-Wave, 2016). It is thus not guaranteed that all the required

quadratic couplers needed to map a specific problem onto the annealer hardware are available.

This problem can be alleviated with a so-called minor embedding of the problem function onto

the D-Wave hardware, where each variable is mapped onto a set of connected qubits, rather

than a single one, at the expense, however, of a severe reduction in the number of available

qubits (Choi, 2008; Chapuis et al., 2017). For instance, the largest embeddable QUBO (of

arbitrary connectivity) on D-Wave 2000Q has 64 variables, thus guaranteeing that arbitrary

QUBO problems with up to 64 variables can be approximately solved on D-Wave. For QUBOs

with a sparse connectivity structure, tailored embeddings can allow for larger instances to be

solved on D-Wave. We note that quantum annealers such as D-Wave do not provide a guarantee

of correctness, and thus typically return approximate solutions (of high quality).

In this article we propose a general decomposition algorithm for NP-hard graph problems

aiming to find an optimal set of vertices by minimizing (1). The proposed approach makes it

possible to solve problems on D-Wave with sizes exceeding the number of available qubits. The

decomposition algorithm recursively splits a given instance into smaller subproblems until, at a

certain recursion level, the generated subproblems are small enough to be solved directly, e.g.,

using a quantum annealer. The decomposition algorithm is exact, meaning that the optimality

of the solution is guaranteed provided all generated subproblems are solved exactly.

We apply our decomposition technique to two important NP-hard problems: the maximum

clique (MC) and the minimum vertex cover (MVC) problems. Formally, we are given an undi-

rected graph G = (V,E) with vertex set V and edge set E ⊆ V × V . A subgraph G(W) of

G induced by a subset W ⊆ V is called a clique if there exists an edge in E between any two

vertices in W , and G(W) is a maximum clique if G(W) is a clique of maximum size. A subset

U ⊆ V is called a vertex cover if every edge in E has at least one endpoint in U , that is, for

every e = (u, v) ∈ E it holds true that u ∈ U or v ∈ U . A minimum vertex cover is a vertex

cover of minimum size.

It is known that all NP-hard problems can be expressed as the minimization of a function of

the form (1) including, for instance, the graph partitioning, the graph coloring, or the maximum

clique problems: see Lucas (2014) for a comprehensive overview of QUBO and Ising formulations

for a variety of NP-hard problems. For instance, the QUBO formulation for solving MC on a

2

graph G = (V,E) is given by

HMC = −A
∑
v∈V

xv +B
∑

(u,v)∈E

xuxv, (2)

where the constants can be chosen as A = 1, B = 2 (Lucas, 2014). Analogously, for solving

MVC on a graph G = (V,E), we consider

HMVC = A′
∑

(u,v)∈E

(1− xu)(1− xv) +B′
∑
v∈V

xv, (3)

where 0 < B′ < A′ is required in order to ensure that minimizing (3) is equivalent to solving the

MVC problem. As an explicit choice, we fix B′ = 1 and A′ = 2 in the remainder of the article.

In both (2) and (3), each xv ∈ {0, 1} for v ∈ V is a binary variable indicating if vertex v belongs

to the MC or the MVC, respectively.

Though proven to be exact, the decomposition algorithms we present in this work have a

worst-case exponential runtime (which is to be expected since the problems we are solving are

NP-hard). We therefore aim to reduce the amount of computations as much as possible. To

this end, a variety of techniques outlined in Section 3 allows one to eliminate a large number of

subproblems during the recursion that cannot contribute to MC or MVC, or to reduce the size

of some subproblems by removing vertices which cannot belong to the optimal solution.

This article is a journal version of Pelofske et al. (2019b), published in the Proceedings

of the 16th ACM International Conference on Computing Frontiers 2019. In contrast to the

conference paper, this journal version contains a much more general decomposition framework

which is applicable to a broader class of NP-hard graph problems. We show how the proposed

framework can be concretized into previously published decomposition algorithms for the MC

problem (Pelofske et al., 2019a) and the MVC problem (Pelofske et al., 2019b) as special cases.

We evaluate both methods simultaneously in a unified simulation section. Since the two problems

are related to each other, we will be able to empirically highlight asymmetries between them in

the analysis section.

This article is structured as follows. After a brief literature review in Section 1.1, Section 2

introduces our general decomposition framework, whose implementation we demonstrate for

the MC (Section 2.3) and MVC (Section 2.4) problems. To prune subproblems during the

decomposition, we discuss a variety of bounds and reduction techniques in Section 3. We assess

the performance of our decomposition methods in a detailed simulation study in Section 4. The

article concludes with a discussion of our results in Section 5.

1.1 Literature review

The development of exact algorithms for NP-hard problems has been an area of constant atten-

tion in the literature (Johnson and Tricks, 1996; DIMACS, 2000; Woeginger, 2008).

In particular, the minimum vertex cover problem has been widely studied in the literature

from a variety of aspects (Downey and Fellows, 1992; Balasubramanian et al., 1998; Stege and

Fellows, 1999; Chen et al., 2000, 2001; Niedermeier and Rossmanith, 2003). For instance, Chen

et al. (2010) present a selection of techniques to reduce the size of an MVC instance and introduce

3

a polynomial space and exponential time algorithm of the order of O(1.27k), where k is the

sought maximal size of the MVC, thus improving over the O(1.29k) algorithm of Niedermeier

and Rossmanith (2007). A variation of the MVC problem, the weighted MVC problem, is

studied in Xu et al. (2016).

Decomposition algorithms, such as the algorithm presented in this article, have already been

suggested in Tarjan (1985) and successfully applied to solve a variety of NP-hard problems such

as graph coloring, see Rao (2008).

For quantum annealing, a decomposition algorithm for the maximum clique problem has been

proposed in Chapuis et al. (2017) and Pelofske et al. (2019a). In Pelofske et al. (2019a), the

authors additionally investigate a variety of techniques to prune subproblems during the recursive

decomposition, for instance by computing bounds on the clique size. Similarly, to solve the

maximum independent set problem, an equivalent formulation of the maximum clique problem,

several algorithms are known including some relying on graph decomposition (Giakoumakis and

Vanherpe, 1997; Courcelle et al., 2000).

The algorithm of Bron and Kerbosch (1973) solves a related problem, that is the problem of

enumerating all maximum cliques in a graph. Parallel version of this algorithm are available in

the literature (Rossi et al., 2015). The algorithm of Carraghan and Pardalos (1990) is another

exact method to partially enumerate all maximum cliques.

Further exact algorithms have been developed in recent year, see for instance Robson (1986,

2001) and Xiao and Nagamochi (2013), including those based on principles such as measure and

conquer (Fomin et al., 2006).

Another area of research are branch-and-prune heuristics, including algorithms which use

different solvers when the subproblems are sufficiently small (as we do in this work), see Hou

et al. (2014) and Morrison et al. (2016) for a survey.

2 Decomposing NP-hard graph problems

This section describes a generic algorithm to decompose an NP-hard optimization graph problem

that aims to find an optimal set of vertices minimizing or maximizing a given objective function.

Our basic algorithm targets problems with binary decisions for each vertex: for instance, in (2)

and (3), we are interested in the value of the binary indicator xv for each v ∈ V which encodes

with xv = 1 that vertex v belongs to the maximum clique (or the minimum vertex cover).

The aim of our decomposition is to split up a problem instance into two subproblems with

the property that (a) both subproblems are strictly smaller than the original instance, and

(b) solving each exactly allows to reconstruct the optimal solution of the original instance in

polynomial time. Applying the decomposition recursively thus allows one to decompose a given

problem instance into arbitrarily small subproblems.

2.1 Generic algorithm

Algorithm 1 illustrates the general structure of our decomposition algorithms assuming the

problem is of minimization type. We start with an input graph G = (V,E), a current solution

S (initialized as the empty set), and a value µ of the objective function for the current solution.

4

For instance, for MC, the set S will be the set of vertices belonging to the maximum clique, and

µ will be the clique size. If the graph problem under investigation is a minimization problem,

we start with µ =∞. Additionally, we require some cutoff size smax, which determines the size

at which we stop the decomposition as the subproblems are small enough to be solved with a

quantum or classical method.

First, a vertex v for splitting the solution space is selected. Possible choices investigated in

this work are given in Section 2.2. The splitting vertex v is used to split G into two graphs

G+ and G− on which the optimization problem (e.g., MC or MVC) will be solved, where the

precise splitting routine is problem dependent. For graph G+, we assume that v belongs to the

optimal solution (e.g., the maximum clique), and for G− we assume it does not. Sections 2.3

and 2.4 give specific implementations of the splitting techniques for the maximum clique and

the minimum vertex cover problems, respectively.

Before decomposing G+ and G− further in a similar fashion, we aim to reduce the compu-

tational burden in Algorithm 1 by using context-specific knowledge about the graph problem to

compute lower and upper bounds on the solutions in G+ and G− (see Section 3.1 for a list of

bounds we employ). If it is impossible that G+ or G− contain a solution that improves upon

µ, the value of the best solution found so far, we can discard them. Otherwise, we again use

context-specific knowledge to reduce the size of existing subproblems through vertex and edge

removal techniques (see Section 3.2 for reduction techniques for MC and Section 3.3 for MVC).

If any of the subgraphs (G+ or G−) contains more vertices than the cutoff value smax, the

splitting is recursively called on that subgraph using the current values of S and µ. Otherwise,

i.e., if the corresponding subgraph (G+ or G−) is within the size limit smax, we solve the

optimization problem using any classic or quantum algorithm of choice and update the values

of S and µ appropriately. At the end of the recursion, S and µ contain the correct values of the

solution and the corresponding value of the objective function.

If a maximization problem ought to be solved, we initialize µ = −∞. In line 5 of Algorithm 1,

we discard problems G+ or G− if improvement over µ is impossible, in the sense that the solution

of the subproblems G+ or G− will be less than µ. In line 11, we return S+, µ̃+ if µ̃+ ≥ µ̃−.

Algorithm 1 does not require that subproblems are solved on a quantum device such as the

D-Wave annealer. In principle, any suitable device or method can be used to exactly solve any

of the generated subproblems at any stage of the decomposition. However, one straightforward

choice is to stop decomposing a subproblem further once it can be embedded on the D-Wave

hardware, that is once the subgraph size is at most smax = 46 vertices for the D-Wave 2X at Los

Alamos National Laboratory (the largest size of an arbitrary problem that can be embedded

on the hardware). For the D-Wave 2000Q at Los Alamos National Laboratory, this cutoff is

smax = 64 vertices, and for D-Wave Advantage it is smax = 180 vertices.

Algorithm 1 can also be applied probabilistically: If the solver applied to the subgraphs

at leaf level finds optimal solutions with some probability p, our decomposition algorithm will

report the correct solution for the original graph G with a probability that is a function of p.

5

Algorithm 1: decomposition for a minimization problem

input: G = (V,E), S ← ∅, µ←∞, smin, additional parameters;
1 Choose v ∈ V according to some selection criterion;
2 Denote by S∗ any optimal solution for G. Using context-specific knowledge about the

NP-hard graph problem, define the following proper subgraphs of G:
3 a) G+ = (V +, E+) such that S∗ is an optimal solution for G+ if v ∈ S∗; Update µ+;
4 b) G− = (V −, E−) such that S∗ is an optimal solution for G− if v 6∈ S∗; Update µ−;
5 c) Bound the value of the optimal solutions in G+ and G−, and discard any of them (set

G+ or G− to ∅) if improvement over µ is impossible;
6 d) Attempt to reduce the size of the subgraphs G+ and G− through vertex and edge

removal techniques;
7 if |V +| > smin then S+, µ̃+ = decomposition(G+, S ∪ {v}, µ+, smin);
8 else Solve graph problem directly on G+ and update set of solution vertices S+ and

value µ̃+;
9 if |V −| > smin then S−, µ̃− = decomposition(G−, S, µ−, smin);

10 else Solve graph problem directly on G− and update set of solution vertices S− and
value µ̃−;

11 if µ̃+ ≤ µ̃− then return S+, µ̃+;
12 else return S−, µ̃−;

2.2 Vertex Choice

One tuning parameter of Algorithm 1 is the procedure for selecting the vertex v that is used

in each iteration to split the current graph instance G into two new graphs. Possible choices

include:

1. a vertex v of lowest degree.

2. a vertex v of median degree.

3. a vertex v of highest degree.

4. a vertex v chosen at random.

In any of the above cases, if multiple vertices satisfy the selection criterion, the vertex v which

is extracted is chosen at random. The aforementioned vertex selection approaches are experi-

mentally explored in Section 4.1.

2.3 Implementation for Maximum Clique

Using Algorithm 1 as a framework, we now fill out the details of the generic implementation to

arrive at a decomposition algorithm for MC.

We use the CH-partitioning introduced in Djidjev et al. (2015), see also Chapuis et al. (2017),

in order to split a large input graph G = (V,E) into smaller subgraphs on which a maximum

clique is found. Denoting the unknown maximum clique as V ′ ⊆ V , there are two cases. Either

v ∈ V ′ or v /∈ V ′, each case leading to a subproblem of reduced size. If v ∈ V ′, we extract the

subgraph G+ containing all neighbors of v and all edges between them. We also set µ+ := µ+1.

If v /∈ V ′, the vertex v and all edges adjacent to v are removed from G, thus creating the graph

G− (and µ− := µ). This is visualized in Figure 1.

6

Figure 1: Illustration of the vertex splitting at a vertex v for MC.

Figure 2: Illustration of the vertex splitting at a vertex v for MVC.

Since the cases v ∈ V ′ and v /∈ V ′ are exhaustive, we continue to compute MC on both

subgraphs G+ and G−. Since neither of the generated subgraphs G+ and G− contains v, the

graph size is reduced by at least one in each recursion level, thus guaranteeing the termination

of the algorithm. The clique number ω(G) of G is equal to min(ω(G+) + 1, ω(G−)).

2.4 Implementation for Minimum Vertex Cover

We again select an arbitrary vertex v ∈ V to split the input graph G, see Figure 2. Denoting the

unknown MVC as V ′ ⊆ V , there are again two cases leading to subproblems of reduced sizes.

If v ∈ V ′, we add v to the MVC, update µ+, and remove v and all edges adjacent to v from the

graph since those edges are already covered by the choice of v. The resulting graph is G+ as

illustrated in Figure 2.

If v /∈ V ′, we observe that for all edges with endpoint v, that is for all (v, u) ∈ E, it must

hold true that u ∈ V ′ (µ− is updated accordingly). This is true since, if v /∈ V ′, those edges

must still be covered by their other endpoint u in the MVC. Also, we can remove v from G since

we know it is not in the MVC. Likewise, we can remove all u with (u, v) ∈ V and the adjacent

edges of all such u since those vertices are known to belong to the MVC. In Figure 2, under

7

the assumption that v 6∈ V ′, all vertices inside the blue circle must belong to the MVC. After

removing v and all its adjacent edges, and assigning all encircled vertices to the MVC, we are

left with the subgraph G−.

As for the MC problem, the cases v ∈ V ′ and v /∈ V ′ are exhaustive. In a recursive

application, some bookkeeping is needed to keep track of the current set of cover vertices for

each generated subgraph.

2.5 Decomposition of other NP-hard problems

Apart from the MC and MVC problems considered in Sections 2.3 and 2.4, the decomposition

algorithm of Section 2.1 can be applied to a much broader class of NP-hard problems. This

section gives a brief overview of how such decompositions might work. We assume that any

graph problem listed below is defined on some input graph G = (V,E).

1. Graph partitioning into two components is a classic NP-hard problem. One can decompose

it by assuming that an edge is either a cut edge or it is not, implying that the two adjacent

vertices are in different partitions or the same one.

2. Graph coloring with n colors has a QUBO formulation with |V | · n variables in which

variable xv,i indicates with a 1 if vertex v has color i ∈ {1, . . . , n} (Lucas, 2014). We can

decompose this problem easily by assigning a set of feasible colors to each vertex. We then

select a random vertex v ∈ V and probe each possible color i for v, implying that color i

is removed from the available colors of all vertices adjacent to v.

3. Hamiltonian Cycles can likewise be encoded with |V |2 binary variables in which variable

xv,i indicates with a 1 the ith place of vertex v ∈ V in the sorted order of visited vertices.

We can decompose this problem into |V | subproblems by selecting a random vertex and

assigning it each possible rank in the sorted order of visited vertices. For each assigned

rank, the possible ranks for all other vertices decrease by one, and moreover we know that

one of the adjacent vertices to v will have rank i− 1, and another rank i+ 1.

4. The Traveling Salesman problem is defined on a graph with edge weights. The optimal

Traveling Salesman solution is a Hamiltonian Cycle of minimal total edge weight. Using

the same indicators xv,i for v ∈ V , we can use the same strategy as the one for Hamiltonian

Cycles to decompose such a problem.

In general, any arbitrary QUBO or Ising model can be trivially decomposed using a technique

called probing in Boros and Hammer (2002). For this, we select a random binary variable xi

and create two new QUBOs (or Ising models) by setting xi := 0 and xi := 1 (or −1 and +1 in

the case of Ising models). This will not only eliminate the quadratic term x2i but also reduce all

quadratic terms involving xi to linear terms. The resulting QUBO (or Ising model) can then be

analysed using general purpose bounding or reduction techniques such as the ones in Boros and

Hammer (2002) in order to prune subproblems.

8

3 Pruning techniques for MC and MVC

The recursive decomposition proposed in Section 2.1 allows us to specify problem-specific tech-

niques to bound the optimal solution contained in the generated subproblems, and to reduce the

size of the generated subproblems with the help of reduction techniques. The specific bounds

and reductions we consider in the simulations are discussed in this section.

3.1 Upper and lower bounds for MC and MVC

We bound the size of the MC and MVC of each generated subgraph. The MC and MVC problems

are in a way complementary problems, as the sum of the size of the MVC of a graph G and the

size of the MC of the complement of G equals the number of the vertices of G (due to the fact

that C is a clique in G if and only if V \ C is a vertex cover in the complement of G). Hence,

a lower bound technique on one can be used for an upper bound on the other, and vice versa.

As an example for using bounds, in the case of MVC, if a lower bound on the vertex cover in

any subgraph is greater than or equal to the current best vertex cover size, we do not need to

consider that subproblem for further decomposition as it cannot contain a better solution than

the one already known.

The following are upper bounds for MC and lower bounds for MVC:

1. First, we take the minimum (for MC) or maximum (for MVC) of three easy to compute

bounds.

(a) The function min weighted vertex cover of the NetworkX package (Hagberg et al.,

2008) computes an approximate vertex cover of at most twice the size of the optimal

cover using the algorithm of Bar-Yehuda and Even (1985). Hence, dividing its result

by a factor of two results in a lower bound on the size of the MVC, which is an upper

bound on the size of MC.

(b) We employ the matrix rank upper bound on the size of the maximum independent

set of Budinich (2003). Since a clique in G is an independent set in G, we obtain an

upper bound on the clique size. Likewise, since the complement of any independent

set of vertices is a vertex cover, any upper bound on the maximum independent set

size corresponds to a lower bound on the MVC size.

(c) We use the easy to compute minimum degree bound of (Willis, 2011, page 20).

We will refer to this bound as deterministic bound.

2. Any graph coloring provides an upper bound on the chromatic number, or the minimum

number of colors needed to color the vertices of a graph so that each edge connects vertices

of different colors. Since all vertices in a maximum clique need to be assigned different

colors, the chromatic number is again an upper bound of MC. This means that it gives an

upper bound on the size of the maximum independent set of the complement graph and

thus a lower bound on MVC. We will refer to this bound as chromatic bound. Computing

the chromatic number is NP-hard, so its exact computation would be intractable, but there

are much better heuristics for its approximation compared with the ones for e.g. the clique

9

number. Therefore, a greedy search heuristic for the chromatic number provides an easily

computable bound. To compute a graph coloring, we use the heuristic function greedy color

of the NetworkX package (Hagberg et al., 2008), which is applied to the complement G of

G.

Analogously, the following are lower bounds for MC and upper bounds for MVC:

1. For MC, G− is the larger of the two subgraphs and it contains G+. (However, note

that G+ cannot simply be ignored since the MC number of G is computed as ω(G) =

min(ω(G+) + 1, ω(G−)).) For MVC, G+ is the larger subgraph. Thus at any point in the

decomposition tree, the best solution found so far in G− (G+) can be used to get a lower

(upper) bound on the size of the MC (MVC). Therefore, we first follow the appropriate

recursive branches in the decomposition until we can compute the MC or MVC on any

of the generated subgraphs: its size can then be used to get a good lower (upper) bound

for the size of MC (MVC) in all the other (smaller) generated subgraphs. We call this

strategy the decomposition bound.

2. We apply the fmc maximum clique solver (Pattabiraman et al., 2013) in fast heuristic

mode to G, thus giving us a lower bound on the size of MC. Since the size of the MVC of

G added to the clique number of G equals the size of G, finding an approximation of the

clique number in G with the help of the fmc heuristic translates to an upper bound on the

size of the MVC of G. We will denote this strategy as the fmc bound.

The above bounds are employed during the recursion to prune those subproblems which cannot

contain vertices belonging to the MC or MVC of the input graph.

3.2 Reduction techniques for MC

In addition to using upper and lower bounds, we also use two reduction techniques that allow us

to reduce the size of a subproblem during the decomposition. The first reduction works directly

on the subgraphs, the second one works with the QUBO formulation of MC given in (2).

1. The (vertex) k-core algorithm can reduce the number of vertices of the input graph in

some cases, and the edge k-core algorithm (Chapuis et al., 2017; Batagelj and Zaversnik,

2011) can reduce the number of edges.

The (vertex) k-core of a graph G = (V,E) was defined in Section 2.2 as the maximal

subgraph of G in which every vertex has a degree of at least k. Therefore, if a graph has

a clique C of size k + 1, then this clique C must be contained in the k-core of G and all

vertices outside of the k-core can be removed.

The edge k-core of a graph G is defined in Chapuis et al. (2017). It is easily shown that

for two vertices v, w in a clique of size c, the intersection N(v)∩N(w) of the two neighbor

lists N(v) and N(w) of v and w has size at least c − 2. Denoting the current best lower

bound on the clique size as L, we can therefore choose a random vertex v and remove all

edges (v, w) satisfying |N(v) ∩N(w)| < L− 1, since such edges cannot be part of a clique

with size larger than L.

10

2. Another reduction technique works on the QUBO formulation of MC given in (2). In

particular, for any subgraph produced by our algorithm, we generate the corresponding

QUBO formulation of the MC problem (2), which is then analyzed. Several general-

purpose preprocessing techniques are capable to identify values of a subset of variables,

called persistencies, in a QUBO or Ising problem. Persistencies determine the value of

certain variables in every global minimum (strong persistencies) or at least one global

minimum (weak persistencies). In Boros and Hammer (2002), a comprehensive overview

of such techniques is given. Suppose variable xv for vertex v (see Section 1) is assigned the

value xv = 1 in the persistency analysis: we can then add v to the current set of vertices

belonging to the maximum clique and remove v and its adjacent edges from the subgraph.

If xv = 0, we can remove v and its adjacent edges without further processing. We employ

the qpbo Python bindings of Rother et al. (2007) to carry out the persistency analysis.

We use the vertex and edge k-core algorithms with k being set to the current best lower bound

value for the clique number, thus allowing one to prune entire subgraphs that cannot contain a

clique of size larger than the best current one.

3.3 Reduction techniques for MVC

Similarly to Section 3.2, we employ three reduction techniques to reduce the size of MVC in-

stances during the decomposition. The first two are applied to the subgraphs, the last one works

directly on the QUBO formulation of MVC given in (3).

1. We coin the first method neighbor-based vertex removal (abbreviated as nbvr). Essentially,

we search and remove triangles, vertices of degree one, and vertices of degree zero in any

subgraph. Since in a triangle, any two arbitrarily chosen degree two triangle vertices belong

to the MVC, we add a contribution of two to the overall size of the MVC and remove the

triangle. Analogously, vertices of degree one are automatically in the MVC and can be

removed, along with the only neighbor of that vertex, after adding a contribution of one

to the current size of the MVC. Vertices of degree zero can be removed without further

processing.

2. In Akiba and Iwata (2015a), the authors state a variety of reduction techniques for MVC

that have been used in the theoretical study of exponential-complexity branch-and-reduce

algorithms. For instance, those techniques include degree-one reductions, decomposition,

dominance rules, unconfined vertex reduction, LP- and packing reductions, as well as

folding-, twin-, funnel- and desk reductions. We employ only the reduction methods from

the Java package vertex cover-master of Akiba and Iwata (2015b). For a given input

graph, vertex cover-master returns a superset of the MVC. This means that any vertex

not contained in the output of vertex cover-master is definitely not part of the MVC and

can be removed. The code can be applied repeatedly until no further vertices are found

that can be removed.

3. As for MC, we compute the QUBO formulation for MVC given by (3) for any generated

subgraph and apply persistency analysis to it using the qpbo Python implementation of

11

Rother et al. (2007). Resolved variables during the analysis, e.g., those with xv = 1 for

any v ∈ V , indicate that a particular vertex belongs to the minimum vertex cover. We can

then add that vertex v to the current optimal solution and remove it from the subgraph

together with its adjacent edges. Analogously we remove those v ∈ V with xv = 0.

The simulations in Section 4 assess the effectiveness of the aforementioned bounds (Section 4.2)

and reduction techniques (Section 4.3).

4 Experimental results

In the experiments we look at various aspects of the proposed decomposition method in Algo-

rithm 1. We start with an assessment of the vertex choice of Section 2.2. We then evaluate the

proposed bounds (Section 3.1) and reduction techniques (Sections 3.2 and 3.3). Using the best

combination of vertex choice, bounding and reduction techniques, we concretize the algorithms

for MC (Section 2.3) and MVC (Section 2.4) and evaluate them in Section 4.4. An application

of our algorithms to real world graphs is presented in Section 4.5. A prediction regarding their

scaling behavior on future D-Wave architectures is presented in Section 4.6.

Throughout the simulations we use three measures to assess the performance in all experi-

ments:

1. subgraph count: The total number of subgraphs produced during the decomposition.

2. preprocessing CPU time: The total time for the decomposition alone without actual solving

of any subproblems.

3. predicted solution time: This time accounts for the total preprocessing time and factors in

an average QPU access time of 1.6 seconds for 10000 anneals on D-Wave 2000Q for each of

the generated subgraphs on leaf level. Thus the predicted solution time is estimated using

the formula: subgraph count × 1.6 seconds + preprocessing time. Note that the solutions

returned by D-Wave 2000Q after 10000 anneals might not always be optimal.

In all experiments apart from Section 4.6, we always run the decomposition until the subgraphs

produced in the recursion reach 64 vertices, the largest size of an arbitrary problem that can

embedded onto the D-Wave 2000Q hardware. As test graphs, we employ ErdősRényi random

graphs (Erdös and Rényi, 1960) with 100 vertices and an edge density ranging from 0.1 to 0.9

in steps of 0.1.

4.1 Evaluation of the vertex selection

We start with an assessment of the strategies for vertex selection discussed in Section 2.2.

Figure 3 presents results for subgraph count, preprocessing and predicted solution times for

MC and the four vertex selection choices of Section 2.2. We observe that the four strategies

roughly agree for low densities across all measures, though for very low densities the random

vertex selection has a slight advantage in terms of subgraph count. However, for densities above

0.5, selecting a lowest degree vertex yields best performance across all measures, while a highest

degree vertex selection performs worst.

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

102

103

104

su
bg

ra
ph

 c
ou

nt

high
low
med
rand

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

10 1

100

101

102

tim
e

[s
]

high
low
med
rand

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

102

103

104

tim
e

[s
]

high
low
med
rand

Figure 3: Vertex selection strategies for MC:
high, low, median degree vertex and random
vertex. Subgraph count (top), preprocessing
time (middle) and predicted solution time (bot-
tom) as a function of the graph density. Log-
arithmic scale on the y-axis. Error bars of one
standard deviation.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

102

103

104

su
bg

ra
ph

 c
ou

nt

high
low
med
rand

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

100

101

tim
e

[s
]

high
low
med
rand

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

102

103

104

tim
e

[s
]

high
low
med
rand

Figure 4: Vertex selection strategies for MVC:
high, low, median degree vertex and random
vertex. Subgraph count (top), preprocessing
time (middle) and predicted solution time (bot-
tom) as a function of the graph density. Log-
arithmic scale on the y-axis. Error bars of one
standard deviation.

13

For MVC, which is the inverse problem of MC, we also observe an inverted picture in Figure 4.

Here, selecting a highest degree vertex yields best performance across all measures for low graph

densities, while lowest degree vertex selection performs worst. The intuition here is that, if the

vertex degree is k, then the graph G− will have k−1 fewer vertices then G. For higher densities,

the four strategies yield roughly similar results.

4.2 Lower and upper bounds

We now evaluate the lower and upper bounds discussed in Section 3.1. For MC, the decom-

position and fmc bounds are lower bounds, while the chromatic and deterministic bounds are

upper bounds. Results are shown in Figure 5. We observe that all combinations of bounds yield

high reductions for low and moderate densities, and that the bounds become less effective for

high densities. Of the four combinations tested, using the decomposition lower bound and the

chromatic upper bound seems most advantageous as it yields the lowest subgraph count, is the

quickest to compute, and results in an overall fastest runtime.

Figure 6 repeats the assessment of the lower and upper bounds for MVC. Now, lower bounds

for MVC are the chromatic and deterministic bounds, while the decomposition and fmc bounds

are upper bounds. Since MC and MVC are inverse problems, the bounds are now less effective

for low graph densities, and become highly effective for moderate and high densities. We again

observe that overall, the combination of lower chromatic bound and upper decomposition bound

is most advantageous.

4.3 Reduction strategies

Figure 7 assesses the behavior of the two reduction techniques for MC discussed in Section 3.2.

Those are the qpbo reduction which analyses the QUBO representation of MC given in (2), and

the k-core reduction which works on the graph itself.

We observe a particular behavior of these reductions in Figure 7: overall, reductions are

highly effective for low and moderate graph densities, and become less effective for high densities.

While for low densities, k-core is better than qpbo, both techniques draw equal for moderate

densities and qpbo overtakes k-core for high densities. The fact that qpbo becomes more effective

for high densities has already been observed in Hahn and Djidjev (2017). As shown in the plot

depicting the preprocessing time, k-core is computationally efficient for all densities, while the

computational complexity of qpbo is more complex but generally increases for high densities.

The behavior of the predicted solution time again reflects the behavior of the subgraph count,

with k-core being faster for low and medium densities, and slower for high densities.

Figure 8 shows a similar comparison for the three reduction techniques for MVC outlined in

Section 3.3. Those are qpbo working on the QUBO representation of MVC in (3), the reduction

techniques of Akiba and Iwata (2015a) given in the Java package vertex cover-master of Akiba

and Iwata (2015b), and the neighbor based vertex removal (nbvr).

We observe that all reductions are able to reduce the subproblems most effectively for medium

and high densities. Neighbor based vertex removal is fastest to compute, and persistency analysis

again becomes slower with increasing graph density. Overall, neighbor based vertex removal is

14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

0

100

200

300

400

500

su
bg

ra
ph

 c
ou

nt

lower_decomp_upper_chrom
lower_decomp_upper_determ
lower_fmc_upper_chrom
lower_fmc_upper_determ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

0

5

10

15

20

tim
e

[s
]

lower_decomp_upper_chrom
lower_decomp_upper_determ
lower_fmc_upper_chrom
lower_fmc_upper_determ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

0
100
200
300
400
500
600
700
800

tim
e

[s
]

lower_decomp_upper_chrom
lower_decomp_upper_determ
lower_fmc_upper_chrom
lower_fmc_upper_determ

Figure 5: All combinations of lower and upper
bounds for MC. Lower bounds are the decom-
position and fmc bounds, upper bounds are the
chromatic and deterministic bounds (see Sec-
tion 3.1). Subgraph count (top), preprocessing
time (middle) and predicted solution time (bot-
tom) as a function of the graph density. Error
bars of one standard deviation.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

0
50

100
150
200
250
300
350
400

su
bg

ra
ph

 c
ou

nt

lower_chrom_upper_decomp
lower_chrom_upper_fmc
lower_determ_upper_decomp
lower_determ_upper_fmc

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

0

5

10

15

20

25
tim

e
[s

]
lower_chrom_upper_decomp
lower_chrom_upper_fmc
lower_determ_upper_decomp
lower_determ_upper_fmc

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

0
100
200
300
400
500
600

tim
e

[s
]

lower_chrom_upper_decomp
lower_chrom_upper_fmc
lower_determ_upper_decomp
lower_determ_upper_fmc

Figure 6: All combinations of lower and upper
bounds for MVC. Lower bounds are the chro-
matic and deterministic bounds, upper bounds
are the decomposition and fmc bounds (see Sec-
tion 3.1). Subgraph count (top), preprocessing
time (middle) and predicted solution time (bot-
tom) as a function of the graph density. Error
bars of one standard deviation.

15

Graph name No. No. CPU No. Time [s]
vertices edges time subgraphs

bn-macaque-rhesus-interareal- 93 2700 0.0701 1 1.670
cortical-network-2
ENZYMES-g8 88 133 0.016 1 1.616
ENZYMES-g123 90 127 0.0167 1 1.617
rt-retweet 96 117 0.0199 1 1.619
polbooks 105 441 0.0329 1 1.633
ia-enron-only 143 623 0.0756 1 1.676
ia-infect-hyper 113 2196 0.0846 1 1.685
johnson16-2-4 120 5460 2.611 531 852.211

Table 1: Predicted solution time in seconds for real world graphs based on a single run using
DBK.

fastest to compute, yields the lowest number of subgraphs during decomposition and the lowest

overall runtime.

4.4 The DBK and DBR algorithms

Using our preparatory experiments of Sections 4.1 to 4.3, we can now fully specify the decom-

position algorithm for MC introduced in Section 2.3. To be precise, we employ the algorithm of

Section 2.3 with low degree vertex selection (Section 4.1), the decomposition lower and chromatic

upper bounds (Section 4.2), and the k-core reduction strategy as determined in Section 4.3. As

in Pelofske et al. (2019a), we call the resulting algorithm the DBK algorithm (Decomposition,

Bounds, K-core).

Figure 9 shows scaling results of DBK as a function of the graph size ranging from 60 to

180 vertices, and for three graph densities d ∈ {0.25, 0.5, 0.75}. We observe that the scaling is

superpolynomial in the graph size, which is to be expected when solving an NP-hard problem.

We also observe that as expected, denser graphs require a higher solver runtime since for dense

graphs the extracted subgraphs on average contain more vertices and thus take longer to be

fully decomposed.

We repeat the same scaling experiment for the MVC problem. To fully specify the algorithm

of Section 2.4, we now employ the high degree vertex selection (Section 4.1), the decomposition

upper and chromatic lower bounds (Section 4.2), and the neighbor based vertex removal reduc-

tion strategy as determined in Section 4.3. As in Pelofske et al. (2019b), we call the resulting

algorithm the DBR algorithm (Decomposition, Bounds, Reduction).

Analogously to the MC scaling, Figure 10 shows scaling results for MVC. Importantly, and

as expected due to the inverse relationship of the MC and MVC problems, the DBR algorithm

also has a superpolynomial scaling, where higher graph densities result in a lower runtime.

4.5 Applying our algorithms to real world graphs

To demonstrate the applicability of our proposed algorithms, we apply them to find cliques or

vertex covers in real world graphs (Rossi and Ahmed, 2015; Rossi et al., 2014, 2012; Cohen,

2009; Amunts et al., 2013; SocioPatterns, 2012; Rossi and Ahmed, 2014; Bader et al., 2013). For

16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

0

100

200

300

400

su
bg

ra
ph

 c
ou

nt

persistency analysis
k-core

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

0
5

10
15
20
25
30
35

tim
e

[s
]

persistency analysis
k-core

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

0
100
200
300
400
500
600
700

tim
e

[s
]

persistency analysis
k-core

Figure 7: Persistency analysis and k-core re-
duction techniques for MC. Subgraph count
(top), preprocessing time (middle) and pre-
dicted solution time (bottom) as a function of
the graph density. Error bars of one standard
deviation.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

100

200

300

400

su
bg

ra
ph

 c
ou

nt

persistency analysis
B&R
nbvr

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

0

2

4

6

8

10

tim
e

[s
]

persistency analysis
B&R
nbvr

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

100
200
300
400
500
600
700

tim
e

[s
]

persistency analysis
B&R
nbvr

Figure 8: Persistency analysis, B&R reduction
and neighbor based vertex removal (nbvr) re-
duction techniques for MC. Subgraph count
(top), preprocessing time (middle) and pre-
dicted solution time (bottom) as a function of
the graph density. Error bars of one standard
deviation.

17

60 80 100 120 140 160 180
graph size

100

101

102

103

104

su
bg

ra
ph

 c
ou

nt

0.25
0.5
0.75

60 80 100 120 140 160 180
graph size

10 3

10 2

10 1

100

101

102

tim
e

[s
]

0.25
0.5
0.75

60 80 100 120 140 160 180
graph size

100

101

102

103

104

tim
e

[s
]

0.25
0.5
0.75

Figure 9: Performance of the DBK algorithm
as a function of the graph size. Graph densities
d ∈ {0.25, 0.5, 0.75}. Subgraph count (top),
preprocessing time (middle) and predicted so-
lution time (bottom) as a function of the graph
density. Logarithmic scale on the y-axis. Error
bars of one standard deviation.

60 80 100 120 140 160 180
graph size

100

101

102

103

104

su
bg

ra
ph

 c
ou

nt

0.25
0.5
0.75

60 80 100 120 140 160 180
graph size

10 2

10 1

100

101

102

tim
e

[s
]

0.25
0.5
0.75

60 80 100 120 140 160 180
graph size

101

102

103

104

tim
e

[s
]

0.25
0.5
0.75

Figure 10: Performance of the DBR algorithm
as a function of the graph size. Graph densities
d ∈ {0.25, 0.5, 0.75}. Subgraph count (top),
preprocessing time (middle) and predicted so-
lution time (bottom) as a function of the graph
density. Logarithmic scale on the y-axis. Error
bars of one standard deviation.

18

Graph name No. No. CPU No. Time [s]
vertices edges time subgraphs

bn-macaque-rhesus-interareal- 93 2700 0.104 1 1.704
cortical-network-2
ENZYMES-g8 88 133 0.0233 2 3.223
ENZYMES-g123 90 127 0.0205 1 1.620
rt-retweet 96 117 0.0161 1 1.602
polbooks 105 441 0.060 1 1.660
ia-enron-only 143 623 0.169 6 9.769
ia-infect-hyper 113 2196 0.350 22 35.550
johnson16-2-4 120 5460 0.536 2 3.736

Table 2: Predicted solution time in seconds for real world graphs based on a single run using
DBR.

MC, Table 1 shows results for the DBK algorithm, demonstrating that graphs with hundreds

of vertices and thousands of edges can be solved in a few seconds. We also observe that the

bounding and reduction techniques result in a strong pruning of the generated subproblems,

since the number of created subproblems is typically very low.

For MVC, an assessment of the DBR algorithm in Table 2 confirms these results.

4.6 Performance on future D-Wave architectures

When using our algorithms in connection with the D-Wave annealer, DBR or DBK will be run

until the size of a subproblem created during the decomposition reaches at most 46 vertices for

D-Wave 2X (64 for D-Wave 2000Q, and 180 for D-Wave Advantage), since QUBOs of this size

are guaranteed to be embeddable on the qubit architectures. It is interesting to investigate how

the scaling behavior of our algorithms depends on this cutoff of the decomposition. For this we

apply our DBR and DBK algorithms to random graph instances of fixed density, and decompose

those graphs until a limit is reached that depends on the D-Wave architectures we investigate.

This allows us to report numbers of generated subgraphs (subgraph count) for each architecture

and preprocessing times. Assuming a fixed time of 1.6 seconds for 10000 anneals as for D-Wave

2X and 2000Q, we can also report predicted solution times for D-Wave Advantage.

For a fixed graph density of 0.5, Figure 11 shows runtime predictions for DBR. As expected,

a higher cutoff leads to a faster runtime. Notably, we observe almost no difference between

D-Wave 2X and 2000Q, but a pronounced speedup on D-Wave Advantage. It seems as if the

slope for the 180 vertex cutoff on D-Wave Advantage slightly decreases, but this remains for

further investigation.

Prediction results for the DBR algorithm (Figure 12) are qualitatively similar.

5 Discussion

This article proposed a novel decomposition framework for NP-hard graph problems character-

ized by finding an optimal set of vertices. The framework recursively splits a given instance of a

NP-hard graph problem into smaller subproblems until, at some recursion level, the generated

subproblems can be solved with any method of choice. This includes but is not limited to a

19

180 200 220 240 260 280
graph size

101

102

103

su
bg

ra
ph

 c
ou

nt

46
64
180

180 200 220 240 260 280
graph size

10 1

100

101

102

tim
e

[s
]

46
64
180

180 200 220 240 260 280
graph size

101

102

103

104

tim
e

[s
]

46
64
180

Figure 11: Performance prediction of the DBK
algorithm on future D-Wave architectures as a
function of the graph size. Recursion cutoff at
subgraph sizes of 46, 64, and 180 vertices. Sub-
graph count (top), preprocessing time (middle)
and predicted solution time (bottom) as a func-
tion of the graph size. Logarithmic scale on the
y-axis. Error bars of one standard deviation.
Graph density 0.5.

180 200 220 240 260 280
graph size

101

102

103

su
bg

ra
ph

 c
ou

nt

46
64
180

180 200 220 240 260 280
graph size

100

101

102
tim

e
[s

]

46
64
180

180 200 220 240 260 280
graph size

101

102

103

104

tim
e

[s
]

46
64
180

Figure 12: Performance prediction of the DBR
algorithm on future D-Wave architectures as a
function of the graph size. Recursion cutoff at
subgraph sizes of 46, 64, and 180 vertices. Sub-
graph count (top), preprocessing time (middle)
and predicted solution time (bottom) as a func-
tion of the graph size. Logarithmic scale on the
y-axis. Error bars of one standard deviation.
Graph density 0.5.

20

quantum annealer such as the ones of D-Wave, Inc. The algorithm is exact, meaning that the op-

timal solution of the original problem is guaranteed under the assumption that all subproblems

are solved exactly.

We concretize our framework for two important NP-hard graph problems, the Maxmimum

Clique (MC) and the Minimum Vertex Cover (MVC) problems. In both cases, we arrive at a

decomposition method capable of splitting arbitrarily large problem instances into subproblems

solvable on D-Wave.

To speed up the computations, our generic algorithm allows for the specification of bounds

and reduction techniques which help to reduce the computational workload. We investigate

several such techniques in detail in the experimental analysis section, and use our results to

fully specify the DBK (for MC) and DBR algorithms (for MVC). We summarize our findings as

follows:

1. Our results nicely confirm the inverse relationship of the MC and MVC problems in that

empirically, the best lower (upper) bounds are also the best upper (lower) bounds of the

other problem. Moreover, the scaling behavior of our algorithms as a function of the graph

density is nicely inverted.

2. Both algorithms show a reasonable scaling behavior and exactly solve graphs with about

300 vertices in less than one hour. We show that an application of our methods to real

world graphs is feasible.

3. A performance prediction on future D-Wave architectures shows that our algorithms will

behave very favorably on future annealer generations, in the sense that a higher qubit

connectivity on the D-Wave chip will result in a considerable runtime reduction for our

methods.

With this article we solely aim to provide a method that can be used to help quantum

annealers solve problems which are too large to be implemented onto their hardware. Current

quantum devices are in their infancy, and they are neither large enough nor accurate enough to

compete with classical computers at solving (general) optimization problems. Therefore, we do

not aim to compete with current state-of-the-art classical solvers. However, no matter how large

and how accurate quantum computers become in the future, there will always exist problems too

large for their hardware, and decomposition algorithms like the proposed ones will be needed.

Future work includes the investigation of further techniques to bound, reduce and prune

the subproblems created during the decomposition. Moreover, more NP-hard problems could

be investigated with our framework, and an improved implementation of our DBK and DBR

algorithms would be beneficial.

Acknowledgments

Research presented in this article was supported by the Laboratory Directed Research and

Development program of Los Alamos National Laboratory under project numbers 20180267ER

and 20190065DR.

21

References

Akiba, T. and Iwata, Y. (2015a). Branch-and-reduce exponential/fpt algorithms in practice:

A case study of vertex cover. 2015 Proceedings of the Seventeenth Workshop on Algorithm

Engineering and Experiments (ALENEX), pages 1–12.

Akiba, T. and Iwata, Y. (2015b). Vertex cover solver. https://github.com/wata-

orz/vertex cover.

Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.-É., Bludau,

S., Bazin, P.-L., Lewis, L. B., Oros-Peusquens, A.-M., Shah, N. J., Lippert, T., Zilles, K.,

and Evans, A. C. (2013). Bigbrain: An ultrahigh-resolution 3d human brain model. Science,

340(6139):1472–1475.

Bader, D. A., Meyerhenke, H., Sanders, P., and Wagner, D. (2013). Graph Partitioning and

Graph Clustering. 10th DIMACS Implementation Challenge Workshop February 13-14, 2012.

Contemp Math, 588.

Balasubramanian, R., Fellows, M., and Raman, V. (1998). An improved fixed parameter algo-

rithm for vertex cover. Information Processing Letters, pages 163–168.

Bar-Yehuda, R. and Even, S. (1985). A local-ratio theorem for approximating the weighted

vertex cover problem. Ann Discrete Math, 25:27–46.

Barahona, F. (1982). On the computational complexity of ising spin glass models. J Phys A:

Math Gen, 15:3241–3253.

Batagelj, V. and Zaversnik, M. (2011). An O(m) Algorithm for Cores Decomposition of Net-

works. Adv Dat An Class, 5(2).

Boros, E. and Hammer, P. (2002). Pseudo-boolean optimization. Discrete Appl Math, 123(1–

3):155–225.

Bron, C. and Kerbosch, J. (1973). Algorithm 457: Finding all cliques of an undirected graph.

Commun ACM, 16(9):575–577.

Budinich, M. (2003). Exact bounds on the order of the maximum clique of a graph. Discrete

Applied Mathematics, 127(3):535–543.

Carraghan, R. and Pardalos, P. (1990). An exact algorithm for the maximum clique problem.

Operations Research Letters, 9(6):375–382.

Chapuis, G., Djidjev, H., Hahn, G., and Rizk, G. (2017). Finding Maximum Cliques on the

D-Wave Quantum Annealer. Proceedings of the 2017 ACM International Conference on Com-

puting Frontiers (CF’17), pages 1–8.

Chen, J., Kanj, I., and Jia, W. (2001). Vertex cover: further observations and further improve-

ments. Journal of Algorithms, 41:280–301.

22

Chen, J., Kanj, I., and Xia, G. (2010). Improved upper bounds for vertex cover. Theoretical

Computer Science, 411:3736–3756.

Chen, J., Liu, L., and Jia, W. (2000). Improvement on vertex cover for low degree graphs.

Networks, 35:253–259.

Choi, V. (2008). Minor-embedding in adiabatic quantum computation: I. the parameter setting

problem. Quantum Information Processing, 7:193–209.

Cohen, W. (2009). Enron email dataset. Proceedings of the 16th Annual Symposium on The-

oretical Aspects of Computer Science STACS 99. http://www.cs.cmu.edu/∼enron. Accessed

in 2009.

Courcelle, B., Makowsky, J., and Rotics, U. (2000). Linear time solvable optimization problems

on graphs of bounded clique-width. Theor Comput Syst, 33(2):125–150.

D-Wave (2016). Technical Description of the D-Wave Quantum Processing Unit. D-Wave.

DIMACS (2000). Workshop on Faster Exact Algorithms for NP-hard problems. Princeton, NJ.

Djidjev, H., Chapuis, G., Hahn, G., and Rizk, G. (2016). Efficient Combinatorial Optimization

Using Quantum Annealing. LA-UR-16-27928. arXiv:1801.08653.

Djidjev, H., Hahn, G., Niklasson, A., and Sardeshmukh, V. (2015). Graph Partitioning Methods

for Fast Parallel Quantum Molecular Dynamics. SIAM Workshop on Combinatorial Scientific

Computing CSC16.

Downey, R. and Fellows, M. (1992). Fixed-parameter tractability and completeness. Congressus

Numerantium, 87:161–187.

Erdös, P. and Rényi, A. (1960). On the Evolution of Random Graphs. Publication of the Math

Inst of the Hungarian Academy of Sciences, 5:17–61.

Fomin, F. V., Grandoni, F., and Kratsch, D. (2006). Measure and Conquer: A Simple O(20.288n)

Independent Set Algorithm. SODA ’06: Proceedings of the seventeenth annual ACM-SIAM

symposium on Discrete algorithm, pages 18–25.

Giakoumakis, V. and Vanherpe, J. (1997). On extended P4-reducible and extended P4-sparse

graphs. Theoret Comput Sci, 180:269–286.

Hagberg, A., Schult, D., and Swart, P. (2008). Exploring network structure, dynamics, and

function using NetworkX. Proceedings of SciPy2008, pages 11–15.

Hahn, G. and Djidjev, H. N. (2017). Reducing binary quadratic forms for more scalable quantum

annealing. IEEE International Conference on Rebooting Computing (ICRC), pages 1–8.

Hou, Y. T., Shi, Y., and Sherali, H. D. (2014). Branch-and-bound framework and application,

pages 95–121. Cambridge University Press.

Johnson, D. and Tricks, M. (1996). Cliques, Coloring and Satisfiability, Second DIMACS Im-

plementation Challenges.

23

Lucas, A. (2014). Ising formulations of many NP problems. Front Phys, 2(5):1–27.

Morrison, D., Jacobson, S., Sauppe, J., and Sewell, E. (2016). Branch-and-bound algorithms:

A survey of recent advances in searching, branching, and pruning. Discrete Optimization,

19:79–102.

Niedermeier, R. and Rossmanith, P. (2003). On efficient fixed-parameter algorithms for weighted

vertex cover. Journal of Algorithms, 47:63–77.

Niedermeier, R. and Rossmanith, P. (2007). Upper bounds for vertex cover further improved.

In Proceedings of the 16th Symposium on Theoretical Aspects of Computer Science (STACS).

Pattabiraman, B., Patwary, M. M. A., Gebremedhin, A. H., Liao, W.-k., and Choudhary, A.

(2013). Fast algorithms for the maximum clique problem on massive sparse graphs. In Bonato,

A., Mitzenmacher, M., and Pra lat, P., editors, Algorithms and Models for the Web Graph,

pages 156–169, Cham. Springer International Publishing.

Pelofske, E., Hahn, G., and Djidjev, H. (2019a). Solving large maximum clique problems on a

quantum annealer. Proceedings of the International Workshop on Quantum Technology and

Optimization Problems QTOP’19, pages 123–135.

Pelofske, E., Hahn, G., and Djidjev, H. (2019b). Solving large Minimum Vertex Cover problems

on a quantum annealer. Proceedings of the Computing Frontiers Conference CF’19, pages

76–84.

Rao, M. (2008). Solving some NP-complete problems using split decomposition. Discrete Appl

Math, 156(14):2768–2780.

Robson, J. (1986). Algorithms for Maximum independent Sets. J Algorithms, 7:425–440.

Robson, J. M. (2001). Finding a maximum independent set in time o(2n/4).

Rossi, R., Gleich, D., and Gebremedhin, A. (2015). Parallel Maximum Clique Algorithms with

Applications to Network Analysis. SIAM J. Sci. Comput., 37(5):C589–C616.

Rossi, R. A. and Ahmed, N. K. (2014). Coloring large complex networks. In Social Network

Analysis and Mining, pages 1–51.

Rossi, R. A. and Ahmed, N. K. (2015). The network data repository with interactive graph

analytics and visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial

Intelligence.

Rossi, R. A., Gleich, D. F., Gebremedhin, A. H., and Patwary, M. A. (2012). What if CLIQUE

were fast? Maximum Cliques in Information Networks and Strong Components in Temporal

Networks. arXiv preprint arXiv:1210.5802, pages 1–11.

Rossi, R. A., Gleich, D. F., Gebremedhin, A. H., and Patwary, M. A. (2014). Fast maximum

clique algorithms for large graphs. In Proceedings of the 23rd International Conference on

World Wide Web (WWW).

24

Rother, C., Kolmogorov, V., Lempitsky, V., and Szummer, M. (2007). Optimizing binary MRFs

via extended roof duality. CVPR.

SocioPatterns (2012). Infectious contact networks. http://www.sociopatterns.org/datasets. Ac-

cessed 09/12/12.

Stege, U. and Fellows, M. (1999). An improved fixed-parameter-tractable algorithm for vertex

cover. Technical Report 318, Department of Computer Science, ETH Zurich.

Tarjan, R. (1985). Decomposition by clique separators. Discrete Math, 55(2):221–232.

Willis, W. (2011). Bounds for the independence number of a graph. Master’s thesis, Virginia

Commonwealth University. https://scholarscompass.vcu.edu/etd/2575.

Woeginger, G. (2008). Open problems around exact algorithms. Discrete Applied Mathematics,

156(3):397–405.

Xiao, M. and Nagamochi, H. (2013). Exact Algorithms for Maximum Independent Set. In Cai

L., Cheng SW., Lam TW. (eds) Algorithms and Computation. ISAAC 2013. Lecture Notes

in Computer Science, volume 8283. Springer, Berlin, Heidelberg.

Xu, H., Kumar, T., and Koenig, S. (2016). A new solver for the minimum weighted vertex

cover problem. In: Quimper CG. (eds) Integration of AI and OR Techniques in Constraint

Programming. CPAIOR 2016. Lecture Notes in Computer Science, vol 9676. Springer, Cham.

25

	1 Introduction
	1.1 Literature review

	2 Decomposing NP-hard graph problems
	2.1 Generic algorithm
	2.2 Vertex Choice
	2.3 Implementation for Maximum Clique
	2.4 Implementation for Minimum Vertex Cover
	2.5 Decomposition of other NP-hard problems

	3 Pruning techniques for MC and MVC
	3.1 Upper and lower bounds for MC and MVC
	3.2 Reduction techniques for MC
	3.3 Reduction techniques for MVC

	4 Experimental results
	4.1 Evaluation of the vertex selection
	4.2 Lower and upper bounds
	4.3 Reduction strategies
	4.4 The DBK and DBR algorithms
	4.5 Applying our algorithms to real world graphs
	4.6 Performance on future D-Wave architectures

	5 Discussion

