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Abstract

Real-time coupling of cell cultures to neuromorphic circuits necessitates a neuromorphic network that replicates biological
behaviour both on a per-neuron and on a population basis, with a network size comparable to the culture. We present a
large neuromorphic system composed of 9 chips, with overall 2880 neurons and 144M conductance-based synapses. As
they are realized in a robust switched-capacitor fashion, individual neurons and synapses can be configured to replicate with
high fidelity a wide range of biologically realistic behaviour. In contrast to other exploration/heuristics-based approaches,
we employ a theory-guided mesoscopic approach to configure the overall network to a range of bursting behaviours, thus
replicating the statistics of our targeted in-vitro network. The mesoscopic approach has implications beyond our proposed biohyb-
rid, as it allows a targeted exploration of the behavioural space, which is a non-trivial task especially in large, recurrent networks.

Keywords Neuromorphic system - Biohybrid - Mesoscopic characterization - Switched capacitor - Mean field

1 Introduction

Neuromorphic designs try to emulate the dynamic
behaviour of biological neurons in CMOS circuits, with
e.g. time dependent integration of synaptic inputs repli-
cated [1]. In this they are in contrast with the new wave
of circuits for deep neural network acceleration, as these
only carry out a very abstracted, scalar and static numer-
ical approximation of neurons and synapses [2]. As they
provide biologically realistic behaviour, real-time neuro-
morphic systems allow for a direct coupling with biological
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tissue [3, 4], enabling to understand, gently control and
virtually extend the biological part. Seamless dynamical
integration of hardware and biology makes such a hybrid
system most effective, where we define seamless as that
the hardware neural network operates in the same dynami-
cal regime as its biological counterpart, and tight coupling
of both generates a meaningful joint dynamics. Biohybrids
can be employed to develop novel strategies for interacting
with neuronal tissue, for e.g. the next generation of neuro-
prostheses. Biohybrids also enhance our understanding of
biological information processing, thus potentially enabling
the next wave of biologically-inspired machine learning.
As a prerequisite, the neuromorphic hardware should
allow to implement finely tunable dynamical modes compa-
rable to biology, for example exhibiting asynchronous firing
and being able to generate network bursts [5, 6]. A wide
range of theoretical works exists on how to generate these
dynamical regimes [5, 7, 8]. However, this necessitates both
a neuromorphic network that is reasonably close to a given
theoretical model and a method for tuning its behaviour to
a desired regime. Neuromorphic designs are usually real-
ized in analog circuits. This means they have in theory
unlimited precision, as they do not quantify their weights or
accumulators as most current deep neural network (DNN)
accelerator functions do (e.g. multiply-accumulate arrays
with fixed 8 bit precision) [2]. However, in practice analog
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neuromorphic circuits struggle with random deviations,
such as static mismatches of the weights, or temperature
noise on the neurons/accumulator circuits, and therefore are
hard to control [10]. In particular, the widely used sub-
threshold technique [1, 9] exhibits a high sensitivity to this,
and is therefore not suitable for the finely controllable sys-
tem we want for the biohybrid. As an alternative, solutions
based on Operational Transconductance Amplifiers have
been proposed [11, 12], which, however, struggle with bio-
logical real-time capability in large-scale integrated systems
where only minimum area is available [13].

As an alternative to the above, we have designed a neuro-
morphic system based on switched-capacitor (SC) circuits.
In SC circuits, time constants and gain parameters depend
on capacitance ratios and switching frequencies and not on
process-dependent transistor parameters. Capacitance ratios
can be manufactured with high precision [14], and the
switching frequency can be controlled and finely tuned by
digital circuits, allowing for faithful reproduction of model
parameters and successful implementations in modern pro-
cess technologies despite increased device mismatch [15,
16]. The system allows replication of realistic conductance
synapses (e.g. NMDA, GABA, AMPA) and spike frequency
adaptation [17], as well as Markram/Tsodyks type presy-
naptic adaptation [18, 19]. As we are only interested in
short-term dynamics comparable to our in-vitro network,
we have omitted long-term plasticity. GABA-type synapes
give inhibitory input to the neuron, i.e. lower its membrane
potential. AMPA- and NMDA type synapses are excitatory,
i.e. raise the neuron membrane potential [17]. AMPA- and
NMDA synapses differ in how their conductance depends
on the potential difference across them, which is modelled
in our work.

With our system, we employ a theory-guided, mean-
field approach to predict recurrent behaviour based on
open-loop characterization of the neuromorphic network.
We show which parameters of the open loop transfer
function govern which behavioural aspects of the recurrent
network, thus enabling a detailed steering of the targeted
behaviour, with very close agreement between theory and
neuromorphic hardware. We demonstrate the capability of
this system to faithfully reproduce theoretical results, to
show a wide range of dynamical regimes in hardware,
especially concentrating on bursting behavior as seen in
cultured networks [6], without need for time-consuming
individual parameter calibration.

In the following, we first introduce the system architec-
ture and the employed circuits, motivating design choices
from general assumptions of mean-field theory. We then
describe the employed mean-field approach and analysis
methods for the expected dynamical regimes. In Results,
we then show measurements of transfer curves for charac-
terizing general network behavior, and then move on to a
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systematic parameter space exploration, showing different
bursting regimes.

2 Materials and Methods
2.1 Chip Architecture and Circuit Components

In mean-field theory, neurons are treated as being statisti-
cally equivalent. In consequence, all neurons of a population
typically have the same base parameters, like synaptic and
membrane time constants or firing threshold, allowing to
share them between neurons. This property is key for utiliz-
ing the multi-synapse approach [20, 21], where one synapse
circuit represents a set of synapses with the same proper-
ties, being driven by their joint input spiking activity. This
approach reduces total silicon area significantly, because the
number of synapse circuits is drastically reduced. Further-
more, it is more flexible, because there are no hard bounds
on the number of synapses per neuron, in contrast e.g. to
synapse matrix architectures [22].

Figure 1 shows the architecture of the SC NeuroSoC,
which follows the multi-synapse approach. It comprises
10 neuron groups each with 32 neuron circuits. All
neurons of one group share the same set of parameters,
saving significantly on silicon area for parameter storage.
Spike decoding and arbitration is done in a hierarchical
manner. First, an incoming pulse packet is routed to
the appropriate neuron group and then to the targeted
synapse of one neuron. Once a neuron produces a spike,
it is forwarded to four digital short-term plasticity (STP)
circuits, implementing the quantal release model [18].
Placing the STP circuit at the output of the neuron saves
silicon area overall, because the STP output is calculated
only once per source neuron in the system. Using four
STP circuits allows four different parameter sets to be
used, which offers enough flexibility for most practical
applications. Each STP circuit produces a 6 bit output
weight, which is forwarded together with the neuron’s
address to the spike output of the chip. For the SC circuits,
each neuron group is equipped with a digital-to-analog
converter, which provides the reversal potentials and firing
threshold voltages, equal for all neurons in the group.

Figure 2 shows a chip photograph with annotated
switched-capacitor processing units, digital processing units
and global clock signal distribution, off-chip communica-
tion and configuration circuitry. The global clock is supplied
externally to reduce chip complexity and allow greater
configurability compared to an on-chip frequency gener-
ator [23]. The chip was implemented in a UMC 180nm
technology. Its size is 10 mm x 5 mm.

A simplified schematic of the neuron circuit is depicted
in Fig. 3. It shows a leaky integrate-and-fire neuron with
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Figure 3 Leaky integrate-and-fire neuron with different types of conductance-based multi-synapses and spike-frequency adaptation.

four individually configurable conductance-based multi-
synapses. A fifth multi-synapse is added for implementing
spike-frequency adaptation (SFA) [24]. Its circuit is
identical to the other multi-synapses, so that it can be
used to model a fifth synapse type if no SFA is required.
Additionally, one of the four multi-synapses is extended
by a voltage-dependent reversal potential, modeling the
behavior of NMDA-type synapses. Details of this circuit can
be found in [25].

One multi-synapse can represent a large amount of
individual synapses which share the same reversal potential
and time constant of the synaptic conductance. The
conductance trace can be modeled by instantaneous jumps
of a certain height at incoming pulses and an exponential
decay between spikes [17]. This behavior is modeled by
a digital circuit in our implementation. It is shown in the
left part of Fig. 4. At an incoming pulse, VALID goes
high and an associated 12 bit weight is provided, which is

accumulated in the register GSYN_REG. The clock signal
runs continuously and lets TAU_COUNTER count upwards
until its value is equal to TAU_SYN. Then the counter is
reset and GSYN_REG is attenuated by a factor of (1 —

~6) a2 0.984, which is done by a right shift operation and
a subtraction. This results in an exponential decay with a
time constant depending on TAU_SYN and the global clock
frequency.

The synaptic conductance itself is realized via an SC
circuit. Its conductance is given by gsyn = Csyn - f, Where
Cqyn is the switching capacitance in the synapse circuit and
f is the switching frequency. Thus, the conductance value
in register GSYN_REG needs to be converted to a switching
frequency f. This is done by the numerically controlled
oscillator shown in the right part of Fig. 4. The conductance
value GSYN_REG is accumulated in PHASE_REG with
a period defined by DELTA_GSYN, which controls the
conductance scaling. When an overflow occurs, a switch
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Figure4 Block diagram of the digital circuitry.
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event for the SC circuit is generated, triggering two non-
overlapping switch signals Phi; and Phiy. Via this simple
circuit, the switching frequency f follows the value of
GSYN_REG proportionally.

The digital circuit shown in Fig. 4 thus guarantees that an
incoming spike train is translated into a biologically realistic
conductance trace and from there to a series of switch events
for the respective synapse SC circuit. This is in contrast to
the system introduced in [20], where each input spike to the
system directly triggers a switch event for the SC circuit.
This would mean that realistic conductance traces had to be
generated off-chip, resulting in a multiplication of the input
spike rate.

In Fig. 5 the analog circuitry can be seen, consisting
of the membrane capacitor Cp, and 5 capacitors Csyy,1-5,

syn 1

syn 1+

313 l S14
synO

syn 0+

% .

which emulate the synaptic conductance of the different
multi-synapse types. Csy,, 1 is surrounded by the switches
Sis and Si¢, which are closed at Phiy and Si3 and Si4,
which are closed at Phi, according to the non-overlapping
switch signals generated by the digital circuitry as shown
in Fig. 4. At Phiy Cyyy,1 is charged by the corresponding
reversal potential Ey, 14 and at Phis a charge equalization
between Cgy, 1 and C,, is performed, which lets the
membrane potential decay towards the reversal potential.
The other synapses work analogously. C; models the
leakage of the membrane and therefore is also switched in a
similar way as the synapses, but with a constant switching
frequency. The additional switches S; and Ss4 have been
introduced to reduce leakage between switching events [15,
16, 25].

o—o/ O—OVreset+

84o—o Vem

ch Vthresh+

+ Vin-

RN

SPK

TR

ch Vthresh-

Figure 5 SC neuron circuit with conductance-based synapses and comparator for threshold detection.
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In contrast to [20], all capacitors are instantiated twice,
because the circuit comprises a fully differential design
which reduces charge injection and clock feed-through
and doubles the usable voltage range. The differential
membrane potential is buffered by an operational amplifier
which allows monitoring every neuron on the chip with an
oscilloscope. Moreover, the buffered membrane voltage is
used for implementation of the NMDA voltage dependence
in one of the multi-synapses, as described in [25].

2.2 System Integration

With its dedicated pulse input and output interfaces, the
NeuroSoC is designed for operating together with a field-
programmable gate array (FPGA), which can be used to
connect several NeuroSoCs. For this, a Xilinx KC705
evaluation board with a Xilinx Kintex7 FPGA has been
extended with custom printed circuit boards. A carrier
board connects to one of the extension headers of the
FPGA evaluation board, generating supply voltages for the
NeuroSoCs and distributing signals to six smaller extension
headers. On each of these headers, one NeuroSoC board
can be plugged in, holding a socket for one NeuroSoC
and providing pin headers for debug outputs. The FPGA
evaluation board features one high pin count and one low
pin count extension header, the latter only providing 10
pins for three NeuroSoCs. Thus, a total of nine NeuroSoCs
may be connected to one FPGA, forming a system with
2880 neurons. Figure 6 shows a photograph of the complete
setup.

Figure 6 Photograph of the
system setup.
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Kintex7 Evaluation Board

NeuroSoC BoardS

The Kintex7 FPGA is the main hub in the system,
connecting the NeuroSoCs among each other. It provides
a Gbit-Ethernet link for interfacing to a host PC for
configuration, and for communicating with other spiking
systems via the user datagram protocol (UDP), such as other
neuromorphic systems, real-time software pulse generators,
or micro-electrode arrays for interfacing to biological tissue.
For this, two previously developed protocols for pulse
exchange [26, 27] are supported. Furthermore, the FPGA
contains buffers for pulse stimulation and tracing to/from
single NeuroSoCs, which are interfaced via Gbit-Ethernet
as well.

The structure of the FPGA firmware and its connections
to external components are depicted in Fig. 7. The UDP
interface to the host is realized by a custom-designed
module, which supports full Gbit-Ethernet line speed. All
other modules on the FPGA firmware can be configured
from the host via connections to individual UDP ports.
Each NeuroSoC chip has its corresponding chip control
module in the FPGA that forwards configuration and
sends/receives pulse packets. Pulse routing, stimulation and
tracing is provided by a central pulse routing module, which
stores its routing information in an external random-access
memory (RAM) included on the FPGA evaluation board.
An experiment control module allows for synchronous start
and stop of experiments, and provides a global time base
with a fixed resolution of 0.1ms.

Routing of pulses during an experiment works as follows:
In the NeuroSoC interface module, incoming pulses from
a NeuroSoC are registered with the current global time.

NeuroSoC
Carrier Board
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Figure 7 System architecture and main FPGA components.

Each pulse is subsequently duplicated four times. For each
of the duplicated pulses, an individual, configurable delay
value can be added to the pulse time. Thus, the system
supports four independently configurable axonal delays per
neuron. Having calculated the target time, pulses are stored
in a buffer inside each NeuroSoC interface module. Once
their target time is reached, pulses are sent to the routing
module. There, the information on the target neurons for
each pulse is fetched from the external RAM. From there,
pulses are sent to their targets immediately. Each pulse can
be routed to a maximum of 3.5k targets, which is enough
for constructing arbitrary network topologies up to fully-
connected networks. The throughput of the whole routing
chain is mainly limited by the input bandwidth per chip of
25 Mevent/s, corresponding to a 225 Mevent/s peak rate of
synaptic events for the whole system.

The whole setup is controlled from a host PC via
a combined C++/Python software stack, implementing a
back-end for the PyNN 0.8 common simulator interface
[28]. This allows for interoperability of the code with
software simulators. The back-end supports a standard
conductance-based leaky integrate-and-fire neuron, as well
as an extra neuron type for giving access to all five
available synapse types. A separate neuron type is employed
for representing Ethernet connections to external setups
[26, 27], allowing for seamless integration of remote
setups in the PyNN script. In particular, this enables
real-time interaction with biological setups [6], making
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hybrid integration of neuromorphic hardware and biological
neurons possible in-situ as well as remotely.

2.3 Mean-Field Approach

The aim of mean field theory is to approximate a population
of neurons with their collective transfer function. In the
case of spiking neurons, this may be the average rate
transfer function (e.g. a hyperbolic tangent) plus added
noise to account for spike discretization, plus offset and
gain terms. Usually, mean field theory is applied to spiking
neural networks to simplify their nonlinear dynamics
and give some theoretical guidance for population-level
configuration and operation. Recently, mean field theory
has also been applied to machine learning networks [29].
In our case, we use it to find stable operating points of the
population.

We try to achieve bursting behavior with the simplest
possible network model, taking a single population of
excitatory neurons with recurrent coupling, and a back-
ground population that provides Poisson input. As shown
in Results, this is a sufficient configuration for a wide
variety of bursting regimes. For characterization, the recur-
rent connections are cut and replaced by a second Poisson
input population, as shown in Fig. 8a. This ’open loop’
configuration allows to measure the transfer curve of the
neuron population, i.e. the reaction to its own stimulation
by the recurrent connections. At all intersections of the
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Figure 8 a Network structure
for open-loop characterization;
b Network structure for bursting
modes.

Excitatory
population

transfer curve with the unity gain curve, the self-consistency
condition of population output being equal to input from
the recurrent coupling is fulfilled, denoting possible fixed
points of the system. Once the recurrent connections are
closed (see Fig. 8b), the network will move towards one
of its stable fixed points. Transitions between fixed points
may be triggered by fluctuations in the background popula-
tion, by external stimulation, or by a dynamic change of the
transfer curve.

The relation of the transfer curve with the network’s
operating points can be utilized for guiding the parameter
tuning of the network. For the pursued bursting behavior,
several conditions need to be fulfilled in the transfer curve.
Bursting is a bi-stable operation, calling for two initially
stable fixed points. This is achieved by an S-shaped transfer
curve, as shown in Fig. 9 (solid line). The upper and lower
fixed points are stable, whereas the fixed point in the middle

Figure 9 Sketch of transfer
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process of burst generation, see X
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is instable, forming the boundary between the attracting
regions of the two stable fixed points.

Initially, the network is in the low-rate stable fixed point.
Temporal variations in the Poisson background result in
perturbations of the network around this point. A network
burst is initiated by a transition to the high-rate stable
fixed point (see number 1 in Fig. 9). This transition may
happen spontaneously if the perturbations due to the Poisson
background are big enough to bring the network beyond
the boundary of the attracting region, i.e. the instable fixed
point [30]. For bursting behavior, the network must move
back to the low-rate stable fixed point spontaneously after
a short time. For this to happen, the high-rate fixed point
must become instable, corresponding to the disappearance
of the upper intersection with the unity gain curve (numbers
2 and 3 in Fig. 9). This can be achieved by some form
of inhibiting adaptation, damping the gain of the transfer

)

150

200
input rate per connection, Hz
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curve (see dashed line). For this purpose, we use spike-
frequency adaptation, as described in the section on the chip
architecture. The length of a burst depends on how fast the
spike-frequency adaptation builds up, which can be scaled
by its amplitude. In turn, the minimum inter-burst interval is
related to the adaptation time constant, because only when
the adaptation has decayed sufficiently, the bi-stable transfer
curve is restored. In absence of external stimulation, the
time of the next burst depends on the interplay between
the variance of the background noise and the shape of
the transfer curve at low frequencies, as discussed above.
This can be thought of in terms of a transition rate from
low- to high-rate fixed point. If the transition rate is high,
the next burst will happen shortly after sufficient decay of
the adaptation, resulting in a regular bursting regime with
a burst interval close to the minimum. If the transition
rate is lower, burst initiation becomes less probable per
unit time, resulting in a more irregular bursting regime
with higher mean inter-burst interval. The shape of the
transfer curve at low rates, and thus the transition rate,
can be influenced effectively by the amplitude of recurrent
connections, changing the overall gain of the transfer curve.
Therefore, we expect a strong dependence of the bursting
regime on this amplitude.

For avoiding synchronization in the activities of single
neurons, we chose a sufficiently big network with sparse
connectivity. Specifically, we employed all 2880 neurons
available in system for the excitatory population and used
random connectivity, where the connection probability was
set such that each neuron receives on average 20 recurrent
and 20 background connections. This network configuration
also makes a mean-field calculation of the transfer curves
applicable, which we use for comparison with the measured
transfer curves in the Results section. Details on the
employed mean-field approximation can be found in
the Appendix.

Following the above approach, we first tuned the transfer
curves without adaptation, resulting in the parameters
listed in Table 1. Afterwards, we added spike-frequency
adaptation, choosing the maximally possible time constant
of 330ms for restricting the maximum burst frequency.
The two remaining free parameters are the conductance
of recurrent connections and the conductance amplitude
for adaptation. Measured transfer curves with the chosen
parameters are detailed in the Results section.

2.4 Analysis Methods

For characterizing the bursting behaviour of a network, the
following procedures and measures were used. For each
parameter set, an experiment of 500s was run. The resulting
output spikes were divided in bins of 50ms. From the
number of spikes per bin, the mean firing rate per neuron

Table 1 List of network parameters.

Network parameter Variable  Value

resting potential Vrest -65mV

reset potential Vreset -80mV
threshold potential Vthresh -50mV
membrane capacitance Cmem InF
membrane time constant Tmem 8ms
refractory period Trefrac 2.5ms
synaptic time constant Tsyn 8ms

synaptic reversal potential Egyn OmV
adaptation time constant Tsfa 330ms
adaptation reversal potential Efa -80mV
neurons in network N 2880
external background sources Npg 200
probability of recurrent connections Prec 0.007(=20/N)
probability of background connections Pbg 0.1(=20/Npg)
conductance of background connections g, 5nS

rate per background source Sog 16Hz

was calculated for each bin. A burst was detected if the
mean firing rate per neuron exhibited a value of more than
20Hz in one or more bins. All subsequent bins above that
threshold were counted as one burst, i.e. the next bin below
20Hz would be detected as the end of the burst.

Two measures were used for network characterization,
the burst length and the inter-burst interval (IBI). The
burst length was taken as the number of subsequent bins
above 20Hz. For characterization, mean and coefficient of
variation (CV) were calculated over all detected bursts.
Likewise, the IBI was taken as the number of subsequent
bins below 20Hz. Again, mean and CV over all detected
IBIs were used for characterization. These statistical
measures were only calculated for those runs, were the
number of detected bursts was greater than 50, for the results
to be informative.

3 Results
3.1 Single Neuron Measurements

Measurement results of a single neuron and several different
flavors of conductance synapse are depicted in Fig. 10.
The upper diagram shows the membrane voltage trace
Viu. At 1 ms, the neuron is stimulated with a 10 kHz
spike train for 10 ms arriving at an AMPA synapse with
high reversal potential and 74mp, = 2 ms. At 30 ms,
an inhibitory GABA spike is triggered (Tgapa = 10 ms),
which decreases the membrane potential. From range40 ms
to 70 ms, a 1 kHz spike train arrives at the NMDA
synapse (Tymda = 100 ms). The supra-linear increase of
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Figure 10 Simulation and

measurement results of
membrane potential with
synaptic input from three
different synapse types, all
aligned to the same time base.
Due to measurement limitations,
we can only measure the analog
membrane voltage continuously.
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the membrane potential indicates the voltage dependence
of NMDA-type synapses (see paper iscas for circuit or
deco for model). After reaching the threshold voltage at
about 90 ms the neuron fires and is reset to its reset
voltage. All measured conductances are converted to their
biological equivalent according to what conversion factor
-, maybe put maximum conductance change per input
(G dach) in parameter table. As expected, the correlation
between simulated and measured conductances (continuous
curve respectively circles in the conductance traces in
Fig. 10) align well. This is due to the fact that parts of the
functionality are digital (the exponential frequency decay
generation, see Fig. 4), and the translation to conductance is
done in a switched capacitor circuit (see Fig. 5), which has
inherent good matching and analog performance.

3.2 Open-Loop Network Measurements

Following the mean-field approach described in Materials
and Methods, we first characterize the bursting network
via open-loop measurements, which allows to predict its
dynamical behavior in the final recurrent setting. Building
upon mean-field theory not only guides the parameter
tuning process, but also allows for a direct comparison of
theory and measurement results.
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Before assessing the final network model, we first
characterize the hardware variations with deterministic
stimulation and connectivity. For this, we modify the
network definition given in Table 1: The number of synaptic
inputs to each neuron is fixed to each 20 for background
and recurrent projections, and the Poisson stimulation is
generated with a fixed seed. As a result, each neuron
is parameterized identically and stimulated independently
with the same spike train.

Figure 11 shows summarized results of the single-
neuron measurements. Variations in the transfer curves are
relatively low, with a median Root Mean Square Error
(RMSE) from the mean of 3.19 Hz. Only a few outliers
exhibit significantly higher RMSE, expanding the range
of measurements. Comparing the measurements with the
theoretical mean-field approximation (cf. solid line) shows
a slight systematic deviation at higher frequencies. This
also makes deviations of single measurements from the
theoretical prediction higher (median RMSE of 6.95 Hz).

A reason of this systematic deviation may be in the
switched-capacitor circuit principle, resulting in discrete
switching events on the neuron membrane. In turn, the
statistical variation of the membrane voltage may be
affected, which would have an impact on the average
spiking behavior of the neurons. To estimate the impact
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Figure 11 Measured open-loop
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of this effect, we adapted the mean-field approximation to
account for this effect, resulting in a modified formulation
for the variance of the membrane voltage (see Appendix
for details). The hardware-adapted transfer curve only
marginally deviates from the original mean-field prediction
(cf. dashed line), but slightly improves matching with the
hardware measurements at high frequencies, resulting in a
median RMSE of 5.86 Hz.

Despite these variations, the measured transfer curves
are in good agreement with the mean-field approximation.
It has to be emphasized that these results were achieved
without any calibration or tuning of the transformation from
model to hardware parameters. Reduced deviations could be
achieved by tuning single parameters of the hardware, e.g.
the synaptic strength, but this would deviate from our idea
of an easily and generally applicable hardware system. With
these results, we move on to the open-loop characterization
of the actual network model.

Figure 12 shows measured open-loop transfer curves
for the network with all parameters as in Table 1. The
transfer curves exhibit an S-shape, as required for a bistable
closed-loop behavior. A stable high-rate state develops at
a conductance between g = 2nS and grec 4nS
for recurrent connections. Measurements and theoretical

250 T T
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Figure 12 Measured open-loop transfer curves with varying grec (left)
and gs, (right). For each measured input frequency, the network
was stimulated for 2 seconds, and the firing rate was computed for
each neuron separately, discarding the first second to eliminate the
influence of transient effects. An 0.5 second phase without stimu-
lation separated the single measurements, letting the network relax
to a resting state. Solid lines show the measured mean over all

predictions for the mean show only minor deviations.
Compared to the single-neuron measurements, deviations
are even smaller, with an RMSE of measured gr.c = 4nS
curve to the mean-field prediction of 2.09 Hz. One reason
for this is the averaging over different synapse counts in the
employed network, which slightly dampens the response at
higher rates compared to a fixed synapse count, partially
compensating for the deviations present in the single-neuron
measurements.

The highest deviation occurs for the g = 2nS curve
at high rates. A simple constant-current approximation gen-
erally showed better correspondence with the measurement
results at high rates, also for this case. However, it failed
to explain the behavior at low input rates. Still, the specific
deviation for gr. = 2nS might be an effect of the employed
mean-field approximation.

Compared to these differences, the variance in the single-
neuron transfer curves is relatively high in the employed
network, see error bars and shaded area. In particular, it is
much higher than the variations seen in the previous single-
neuron characterization (cf. Fig. 11). This effect can be
well explained by the spread in the number of synapses per
neuron due to random connectivity, and the corresponding
differences in total synaptic activation. Again, the variances

250

200 b

150 4
gsfa=0

100 | Geta=2nS :

50 b

output rate per neuron, Hz

0 . . . .
0 50 100 150 200

input rate per connection, Hz

250

neurons, while dashed lines denote the mean-field approximation for
the same parameters. The error bars depict the variation in the sin-
gle neuron responses (lo-interval) for the case grc = 4nS, gsta =
0. The shaded area shows the range of mean-field approximations
with varying number of synapses per neuron due to the employed
random connectivity (lo-interval of synapse count) for the same
parameters.

@ Springer



1314

J Sign Process Syst (2020) 92:1303-1321

in the measured curves well match with those of the
theoretical predictions. This observation confirms the
conclusion from the single-neuron characterization that
circuit mismatch has no significant impact on the network
behavior on the population level.

The influence of the neuron adaptation is as expected
(see right plot in Fig. 12). It lowers the transfer curve,
the S-shape with two stable fixed points disappears. At
a sufficient strength ggr, of the adaptation, the high-rate
state gets instable. When progressing from a non-adapted
to an adapted state, this would force the network back to
a low-rate state. With higher amplitude ggf,, the distance
to the unity gain curve gets higher, which predicts that the
high-rate state collapses faster.

With these measurement results, all prerequisites in
the transfer curves for bursting behavior, as sketched in
Materials and Methods, are fulfilled. We can therefore now
go on to measuring the closed-loop behavior.

3.3 Closed-Loop Network Measurements
In this section, we analyze the behaviour of the closed-loop

network setting. Figure 13 shows the frequency behaviour
of the excitatory population for increasing levels of

self-adaptation. All the other parameters, including the
efficacy of the recurrent connections and the external
stimulation are held constant throughout the trials. At the
beginning of each trial the network is prepared in a state
of low activity and then it evolves autonomously for 10
seconds.

The trial reported in the upper plot shows the network
output in the absence of adaptation. The network exhibits a
bistable behaviour: It starts from a low firing rate at about
2Hz up to 0.9s when it abruptly jumps to the upper state,
where the average firing rate is about 150Hz. The average
firing rate of the two states are in good agreement with the
predictions of the open-loop transfer function described in
the previous section. Both the lower and the upper state are
meta-stable states of the dynamics and the jump between the
two is due to an instantaneous fluctuation of the neuronal
firing rate. Such fluctuations are due to the Poissonian nature
of the external input and to the so called finite-size noise
endogenous of a spiking network of sparsely and randomly
connected neurons [31, 32]. The former source of noise is
dominant when the network is in the lower state, while the
latter dominates when the network is in the upper state.
Balancing the noise levels, to gain control over the bistable
network, is a tricky point, especially in a neuromorphic

Figure 13 Change of network
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mismatched network endowed with a massive amount of
positive feedback, as described in [30]. Here, we follow
the same approach of employing the open-loop transfer
function, while the process is simplified due to the limited
mismatch of the underlying switched-capacitor circuits and
the good correspondence of theory and measurements.

Starting from a controlled noisy bistable behaviour, we
progressively add self-inhibition (SFA), as shown in the
middle and lower plot of Fig. 13. It is evident that the
increase in SFA causes a reduction of the average up-state
duration. In the lower plot, the self-inhibition level is such
that the up-states are completely unstable. In this condition,
as soon as the network tries to jump up, it is immediately
kicked back by the inhibition. The result is a bursting
behaviour of the network. In this conditions bursts do not
last more than 200ms reaching a maximum frequency of
140Hz. We stress here that this behaviour is possible only
thanks to the presence of noise, which makes the lower
level a meta-stable one. By changing a single parameter,
we are able to move from a bistable to a bursting network
behaviour.

To better understand this transition we should consider
the two coupled dynamics: the neuronal one and the
SFA one. Mathematical and numerical analysis of this
double-dynamics have been reported in [5, 33]. Intuitively,
observing the dynamics at the population level, we can
state that the fast neuronal dynamics drives the slower SFA
which in turn, with a certain delay, inhibits the neuronal
activity. This mechanism is evident in the middle plot of
Fig. 13, and we can divide it into 3 phases. In the first
phase (from 2s to 4s) the network is in the lower state,
the SFA level is practically zero and it does not affect the
neuronal dynamics. The second phase starts with a random
fluctuation which induces a transition towards the upper
state (4.3s). The SFA conductance slowly increases and the
inhibitory effect starts destabilizing the upper state. The
third phase starts with a downward transition (4.7s). From
this point on, the SFA conductance decays slowly ensuring
a time period in which a new upward transition is unlikely to
happen. When the SFA level is sufficiently low we are back
in the first phase and this cycle can start again triggered by
a new noisy fluctuation.

The duration of the various phases clearly depends on
the time scales of the neuronal and SFA dynamics, their
relative strength, and on the level of noise in the network.
In the example in Fig. 13 we vary the increase of the
SFA conductance by an individual spike, gspa, from 0
to 4ns. Qualitatively, varying gspa we have two different
scenarios. For low levels of gspa, even when the SFA
conductance reaches its maximum, two meta-stable states
are still allowed. In this case the self-inhibition simply
slightly destabilizes the up-states such that their average
duration is reduced. For high values of gspa, the upper

meta-stable state of the dynamics exists only if the SFA
conductance is sufficiently low. In this condition, when
the SFA conductance is almost zero the network can jump
towards the upper stable state, which however “disappears”
during the transition, due to a fast increase of the SFA
level (cf. also the corresponding transfer curves in the
right plot of Fig. 12). Dependent on the exact moment at
which the SFA conductance reaches the critical threshold,
the transition can not be initiated at all or not completed.
The latter condition is the one shown in the lower plot
of Fig. 13 where the network creates short bursts of high
activity.

The SFA increase per spike gsga is only one dimension of
the parameter space, and the duration of the up-states only
one of the interesting characteristics of the dynamics. In
this paragraph we explore the phase plane gsga vs recurrent
coupling strength gr.. For each couple (gspa, grec), We ran
one experiment with a duration of 500s. We analyzed the
distribution of the burst durations and the distribution of
the inter-burst-intervals (IBI). The mean and the coefficient
of variation of those distributions are reported in Fig. 14.
The different network behaviours, over this phase-plane,
result from different equilibriums between two “forces”: the
tendency of jumping to the upper state, which increases with
grec, and the tendency of destabilizing the upper state, which
increases with gspa.

In the upper right corner of the plane both those forces are
strong, and the result is the quasi deterministic oscillation
shown in the transient plot number 1. In this point of
the phase-plane the time-scale of the dynamics is mostly
governed by the SFA. The duration of the upper state is
governed by the ratio of gspa to grec, and upward transitions
happen soon after the release of the self-inhibition, on
average after 5.5tgpa.

Moving leftwards, grc reduces, and the tendency of
jumping up decreases. Hence the lower point of the
dynamics becomes more and more stable and the average
IBI increases. Also the CV of the IBI increases since larger
fluctuations are now necessary to trigger upward transitions.
In other words, moving leftwards we are moving towards
a more noise-driven regime (see transient plot number 2).
We note here that the IBI distributions are poorly affected
by gsra. This is coherent with the fact that in the lower
state the self-inhibition is negligible a few tsga after the last
downwards transition. On the contrary, the effect of the SFA
is relevant in the upper state. Therefore, the average burst
duration decreases both at increasing gspa and decreasing
grec, since the stability of the upper state reduces in both
cases.

Moving downwards on the phase-plane the force
destabilizing the upper state decreases. Hence we have
longer up-states lasting up to a sufficiently high noise
fluctuation, which also implies a higher CV of their
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Figure 14 Phase-plane of bursting behaviour, varying the efficacies of recurrent connections, grec, and self-inhibition, gspa. The transients in the

lower half of the figure illustrate network behaviour at different positions in the phase-plane, as denoted in the upper left plot.

duration. When gspa is below a certain level relative to  and 4. This transition is quite sharp, and its position
Zrec, Up-states become dominant and the network leaves can be well described by a linear relation between gsga
its bursting regime, as shown by the transient plots 3  and grec.
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These results demonstrate the level of fine control
that can be reached by a theory-driven approach to the
tuning of network dynamics, together with a hardware
implementation strategy resulting in limited mismatch
effects.

4 Discussion
4.1 Neuromorphic Systems

From its inception in 1989 [34], neuromorphic engineering
tried to mimic the design and operating principles of
neural networks, to develop biomimetic microelectronic
devices which implement biological models [35]. So
far, the neuromorphic approach has been successful
in implementations of sensory functions (e.g. visual
processing [36]) and computational functions that rely
on building blocks of brain processing (e.g. pattern
recognition [37]). Here, we present a neuromorphic system
intended for use in a biohybrid, i.e. coupled to a
cultured in-vitro network. The neuromorphic system is
optimized for biologically realistic short-term dynamics,
carried out in switched capacitor (SC) technique. We
have previously shown that using SC a neuromorphic
system can be implemented in ultra-deep submicron
CMOS [15], with synapse density on par with modern
nano-scale approaches [38—40]. Here, we show that SC
also makes for a very reproducible system behaviour,
which enables the construction of large-scale neuromorphic
systems as reproducible behaviour significantly eases
configurability. Compared to existing neuromorphic SC
systems, where simple SC circuits are used for membrane
leakage current generation and synaptic transmission [20,
41], our chip implements significantly more involved,
biologically realistic models, with multiple individually
configurable conductance-based synapse types and spike-
frequency adaptation [42].

As a side note, this approach may also be applicable to
numerical accelerators for machine learning. Recently, there
has been a push to extend the usual multiply-accumulate
arrays used for accelerating deep neural network operations
to the analog domain, e.g. with floating gates or memristors.
SC circuits would offer significantly more controlled analog
behaviour and thus higher equivalent numerical resolution.
A synaptic array such as the one we implemented in
[15] could easily be converted to rate-based operation (for
e.g. deep neural networks) and thus offer a high-density
accelerator for synaptic multiply-accumulate operations.

The intended usage as neuromorphic biohybrid only
necessitates the replication of short-term dynamics. Thus,
the system completely omits long-term plasticity [43, 44],
enabling the use of multisynapses and a corresponding

increase in network size, as per-synapse state variables
are not required. Table 2 gives an overview of the chip
and overall system characteristics. The system size was
dictated by the requirement to enable a network size of
several 1000 neurons with dense connectivity to act as
credible counterpart to a petri dish culture with a similar
number of neurons. The system implements a variety of
different biophysical mechanisms, such as conductance-
based GABA, AMPA, NMDA synapses after the models
in [17] and different types of presynaptic adaptation
derived from [18]. Great care was taken to faithfully
emulate these models in their biological richness [42].
The energy efficiency metric in Table 2 was derived
from measurements with the same parameters as for the
experiments in this paper (see Table 1). As a difference,
all five multi-synapses per neuron were employed and
connection probability was set for 50 synapses per multi-
synapse and neuron on average. With these parameters, the
network showed a behaviour analogous to the upper plot
in Fig. 13. Single-chip power consumption was measured
during a full-scale experiment and the sum of analog and
digital power consumption divided by the total synaptic
input rate per chip. The resulting value for absolute
energy per spike is similar to other systems designed
in comparable technologies (see e.g. comparison table in
[40]). The technology choice of UMC 180 nm was in
hindsight suboptimal, as evident in the large difference
between digital and analog circuit parts. A more advanced
technology, e.g. the 28nm Global Foundries node we used
in [16], would have reduced digital power by at least a factor
of 10.

4.2 Mesoscopic Characterization
We used the well-established mean-field approach for

parameter tuning of the employed network model. For this,
we characterized the recurrent network by its open-loop

Table 2 Characteristics of the presented SC neuromorphic chip (in
brackets: overall system).

Characteristic Value
Technology UMC 180 nm
Number of neurons 320 (2880)
Number of hardware synapses 1.6k (14.4k)
Number of virtual synapses 16M (144M)
Number of presynaptic adaptation circuits 1280 (11520)
Chip area 5%10 mm
Supply voltage 1.8V

Power consumption (analog/SC circuits) 19 mW
Power consumption (digital) 311 mW
Energy/synaptic event 25.8 n]
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transfer function, ensuring that it exhibited the required
features for bursting behavior, such as an S-shape and a
sufficiently strong inhibitory adaptation. The low impact
of device mismatch on the switched-capacitor circuits
resulted in a very good agreement of the measurements
with the expected behavior from mean-field theory without
calibration or problem-specific tuning. This is an advantage
compared to existing mixed-signal neuromorphic systems,
where elaborate hardware calibration was performed before
operation, or the hardware transfer curve was directly
tuned without quantitative correspondence to a given mean-
field approximation [30]. As a consequence, no individual
parameter storage per neuron is required for calibration, but
parameters can be stored in groups, reducing silicon area
for storage, in our case by a factor of 32. Furthermore,
reproducing mean-field theory not only qualitatively, but
quantitatively significantly reduces the effort to utilize
concrete theoretical results in neuromorphic hardware.
Moreover, with this level of correspondence, neuromorphic
hardware can be employed as a direct real-time test bed for
theoretical predictions.

Already with a relatively simple network model, we
showed a wide range of bursting behavior in hardware.
With our results, the dynamical behavior of the network,
characterized by burst length, inter-burst interval and their
distribution, can be tuned by choosing a suitable combi-
nation of only two parameters. These two, the strength
of recurrent connections and the strength of adaptation,
are key for achieving a desired behavior. However, fur-
ther parameters can be utilized for more extended control.
For example, the strength of the background input influ-
ences the probability of burst initiation and the adaptation
time constant defines the minimum inter-burst interval. For
more complex behavior, the other hardware features, such
as synaptic short-term adaptation and NMDA synapses can
be employed, and a more elaborate network model could be
chosen. However, such extensions should always be guided
by a theoretical framework, avoiding ’blind’ parameter tun-
ing without an understanding of the underlying dynamical
mechanisms. Our described mesoscopic tuning framework
can easily be extended to using more complex adaptation
mechanisms provided by the chip, as the basic mechanisms
of tuning curves and bursting stay similar.

4.3 Hybrid Usage

Bursting is a widespread mesoscopic phenomenon in bio-
logical networks. Neuromorphic hardware behaving simi-
larly is a prerequisite for a seamless dynamical integration
with biological networks in hybrid systems. Here, we show
only a subset of the neuromorphic functionality, i.e. exci-
tatory AMPA synapses and Calcium-modulated postsynap-
tic adaptation. With this limited functionality, we already

@ Springer

achieve complex, tunable dynamics. Analysis of the future
biohybrid interface to nerve cells will show which mecha-
nisms we need to further enable on the chip to achieve a
seamless coupling of dynamics between petri dish culture
and neuromorphic network. In extension of the presented
work, our network would need an additional bursting input,
such as indicated in Fig. 8, and a complementary analysis of
its dynamical behavior would be required. With this addi-
tional bursting input provided by biology, the neuromorphic
hardware network could work as an extension or partial
replacement of biological tissue, forming a recurrent hybrid
network. The detailed controllability of the hardware net-
work has the potential for a more fine-grained and natural
interaction with biological networks. Also, it offers a pow-
erful tool for better understanding the behavior of modular
networks [6], utilizing the simpler and finer adjustability of
neuromorphic hardware compared to biological networks.
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Appendix

For the employed leaky-integrate-and-fire neuron with
spike-frequency adaptation (SFA), the membrane voltage
v progresses dependent on synaptic input current igy, and
adaptation current igg, as:

dv

Cmemz = gmem * (Vrest — V) + isfa + iSynv (D

where v is the membrane voltage, Cpem and gmem are
membrane capacitance and conductance, and vyeg denotes
the resting potential. The resulting membrane time constant
is given by Tmem = Cmem/&mem- Each time v reaches
the threshold voltage vgyresh, it emits a spike and the
membrane voltage is held at v for the refractory
period Tiefrac- As detailed in the chip description, synaptic
input is generated by conductance-based synapses with
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exponentially decaying conductances gsyn ;, Which can be
formulated as:

Isyn = ngyn,i : (Esyn,i - ) (2)
i
dgsyn.i .
TSyn,i% = —&syn,i + &syn,i 28(t —tik) 3)
k

In this equation, Esyn ; is the synaptic reversal potential, 7 «
is the time of the k-th spike at synapse i, and gy, ; denotes
the strength of synapse i. The spike-frequency adaptation
current is, is described as an inhibitory conductance-
based synapse (gsyn; < 0), driven by the spikes of the
postsynaptic neuron.

We want to calculate analytical transfer curves for
parameter tuning and comparison to measurement results.
For this, we adapted the mean-field calculations detailed in
[8]. We did not incorporate spike-frequency adaptation, as
it is utilized in our network only as a transient effect to
finish a network burst. In contrast, the following mean-field
calculation derives a steady-state solution.

Following the mean-field approach, all neurons are
assumed to be statistically equivalent. In the employed
network, all excitatory synapses have time constant Tgyn
and reversal potential Egy,. Strength of synapses, gsyn,,-,
is grec for recurrent connections and gy for connections
from background. According to [8], the mean firing rate per
neuron foy can be approximated by:

Vthresh —Uss

e (1 + erf(x))dx ,

= Trefrac + Tmem\/;

fOth Urest —Uss
oy

with erf(x) = % / ey )
T Jo

where Tpem 1S the effective membrane time constant
considering synaptic conductances, vg is the membrane
voltage in steady-state, and o, is the standard deviation of
the membrane voltage.

The effective membrane time constant Tpem results
from the parallel connection of the membrane conductance
gmem = Cmem/Tmem and the total synaptic conductance
&syn,total [8]:

- Cinem
Tmem —

&)

8mem T &syn,total

Here, gsyn,total 1S taken as the mean synaptic conductance for
the current input rate fi, and the background rate f,:

&syn,total = Tsyn * (grecfinNconn,rec + gbgfngconn,bg) . (6)

In this equation, Neonnree = N - Prec and Neonnpg =
Nyg - pog denote the average numbers of recurrent and

background connections per neuron, respectively. Please
note that fi, and fo, both represent the mean firing
rate of a neuron in the excitatory population, the former
presynaptically, the latter postsynaptically. This separation
is a direct consequence of the open-loop characterization;
valid fixed points of the recurrent network are those where
f out = fin-

When the membrane voltage is at its steady-state value
vgs, average currents through the synaptic conductances and
the membrane conductance equalize, resulting in

VUrest€mem T Esyn&syn,total

Vgs = . @)
> 8mem + &syn,total

Finally, following [8], the standard deviation o, of the
membrane voltage distribution can be approximated as

oy = , with Ui2

= finNconn,rec Q?ec + fngconn,bg Q%g > (8

where Qrec = 8recTsyn (Esyn — V) and Qrec = 8bg Tsyn (Esyn —
v) are approximations for the average charge transported
by a single incoming spike over a recurrent or background
connection, respectively. For the average membrane voltage
U, we use U = (Vthresh — Vreset)/2.

For each frequency fi,, calculating the frequency-
dependent variables Tpem, VUss, 0y and inserting them in
Eq. 4 yields an estimate for the output frequency fou. A
sweep over fi, then gives the transfer curve fou(fin). If not
noted otherwise, we use this approximation from mean-field
theory for comparison with the hardware measurements.

The actual membrane voltage in the hardware neurons
behaves slightly different from the above assumptions due
to the switched-capacitor circuit technique. As shown in
Fig. 4, conductance changes for the same synapse type are
accumulated in a digital register GSYN_REG. The value
of this register translates into a switching frequency of
a switched-capacitor circuit connected to the membrane
capacitance. Each switching cycle of this circuit results
in a jump of the membrane voltage due to the charge
equalization between the membrane capacitance C,, and the
respective synaptic or leak conductance Cgyy, or Cr . The size
of this jump is « - (Egy, — v) and « - (EL — v), where o =
Cr/Cn = Csyn/Cpn = 1/20 is the constant capacitance
ratio. As a consequence, while the membrane voltage in
the actual circuit follows that of the original model, it does
so with the mentioned jumps, which necessitates another
formulation of the membrane voltage’s standard deviation,
adapted from the original mean-field model in [8]:

Oy :\/(fsyn e - (Esyn - 7-_1)]2 + fmem - [o - (Esyn - 1_))]2) - Tmem »
)
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where foyn and fiem are the switching frequencies for
the synaptic and leak conductances, respectively. They are
calculated as follows:

1 &syn,total
S syn = ————

« - Tmem &mem

fmem = : fmem (10)

Please note that we use the same synapse type for both
recurrent and background connections, so that there is only
one switching circuit handling the synaptic input.

The modified variance formulation does not change the
transfer curves significantly, but may explain some of the
differences between measurements and original mean-field
theory, as shown in the Results section.
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