Skip to main content
Log in

BrainSort: a Machine Learning Toolkit for Brain Connectome Data Analysis and Visualization

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

In recent years, applying machine learning methods to neurological and psychiatric disorder diagnoses has grasped the interest of many researchers; however, currently available machine learning toolboxes usually require somewhat intermediate programming knowledge. In order to use machine learning methods more quickly and conveniently, we developed an intuitive toolbox named BrainSort. BrainSort used Python as the main programming languages and employed a hospitable Graphical User Interface (GUI). The toolbox is user-friendly for researchers and clinical doctors with little to no prior programming skills. It enables the client to choose from multiple machine learning methods, such as support vector machine (SVM), k-nearest neighbors (k-NN), and convolutional neural network (CNN) for data processing and training. Using BrainSort, doctors and researchers can calculate and visualize the correlation between brain connectome topology parameters and the symptom in question without prolonged programming training, empowering them to use the powerful tool of machine learning in their studies and practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data Availability

Raw data were generated at Xuan Wu Hospital. Derived data and materials supporting the findings of this study are available from the corresponding author on request.

Abbreviations

AAL:

Automated Anatomical Labeling

AD:

Alzheimer’s disease

AUC:

area under curve

CNN:

convolutional neural network

EEG:

Electroencephalography

GUI:

graphical user interface

HC:

healthy control

k-NN:

k-nearest neighbors

MRI:

magnetic resonance imaging

ROC:

receiver operating characteristic

ROI:

region of interest

SVM:

support vector machine

3D:

Three dimensional

References

  1. Pei, G. Y., Guo, G. X., Chen, D. D., Yang, R. S., Shi, Z. Y., Wang, S. J., et al. (2020). BrainKilter: a real-time EEG analysis platform for neurofeedback design and training. Ieee Access, 8, 57661–57673. https://doi.org/10.1109/access.2020.2967903.

    Article  Google Scholar 

  2. Wang, B., Niu, Y., Miao, L. W., Cao, R., Yan, P. F., Guo, H., et al. (2017). Decreased complexity in Alzheimer's disease: Resting-state fMRI evidence of brain entropy mapping. Frontiers in Aging Neuroscience, 9, 11. https://doi.org/10.3389/fnagi.2017.00378.

    Article  Google Scholar 

  3. Yan, T., Wang, W., Yang, L., Chen, K., Chen, R., & Han, Y. (2018). Rich club disturbances of the human connectome from subjective cognitive decline to Alzheimer's disease. Theranostics, 8(12), 3237–3255. https://doi.org/10.7150/thno.23772.

    Article  Google Scholar 

  4. Bassett, D. S., & Bullmore, E. T. (2006). Small-world brain networks. Neuroscientist, 12(6), 512–523. https://doi.org/10.1177/1073858406293182.

    Article  Google Scholar 

  5. Bassett, D. S., & Bullmore, E. T. (2009). Human brain networks in health and disease. Current Opinion in Neurology, 22(4), 340–347. https://doi.org/10.1097/WCO.0b013e32832d93dd.

    Article  Google Scholar 

  6. Bassett, D. S., & Bullmore, E. T. (2017). Small-world brain networks revisited. Neuroscientist, 23(5), 499–516. https://doi.org/10.1177/1073858416667720.

    Article  Google Scholar 

  7. Hu, X., Uhle, F., Fliessbach, K., Wagner, M., Han, Y., Weber, B., & Jessen, F. (2017). Reduced future-oriented decision making in individuals with subjective cognitive decline: A functional MRI study. Alzheimers Dement (Amst), 6, 222–231. https://doi.org/10.1016/j.dadm.2017.02.005.

    Article  Google Scholar 

  8. Bai, F., Shu, N., Yuan, Y., Shi, Y., Yu, H., Wu, D., Wang, J., Xia, M., He, Y., & Zhang, Z. (2012). Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment. The Journal of Neuroscience, 32(12), 4307–4318. https://doi.org/10.1523/jneurosci.5061-11.2012.

    Article  Google Scholar 

  9. Zhao, X., Liu, Y., Wang, X., Liu, B., Xi, Q., Guo, Q., Jiang, H., Jiang, T., & Wang, P. (2012). Disrupted small-world brain networks in moderate Alzheimer's disease: A resting-state FMRI study. PLoS One, 7(3), e33540. https://doi.org/10.1371/journal.pone.0033540.

    Article  Google Scholar 

  10. Kambeitz, J., Kambeitz-Ilankovic, L., Cabral, C., Dwyer, D. B., Calhoun, V. D., van den Heuvel, M. P., Falkai, P., Koutsouleris, N., & Malchow, B. (2016). Aberrant functional whole-brain network architecture in patients with schizophrenia: A meta-analysis. Schizophr Bull, 42 Suppl, 1(Suppl 1), S13–S21. https://doi.org/10.1093/schbul/sbv174.

    Article  Google Scholar 

  11. Alexander-Bloch, A. F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F., Lenroot, R., Giedd, J., & Bullmore, E. T. (2010). Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Frontiers in Systems Neuroscience, 4, 147. https://doi.org/10.3389/fnsys.2010.00147.

    Article  Google Scholar 

  12. Gong, Q., & He, Y. (2015). Depression, neuroimaging and connectomics: A selective overview. Biological Psychiatry, 77(3), 223–235. https://doi.org/10.1016/j.biopsych.2014.08.009.

    Article  Google Scholar 

  13. Xie, Y. Y., Liu, T. T., Ai, J., Chen, D. D., Zhuo, Y. R., Zhao, G. L., et al. (2019). Changes in centrality frequency of the default mode network in individuals with subjective cognitive decline. [article]. Frontiers in Aging Neuroscience, 11, 11. https://doi.org/10.3389/fnagi.2019.00118.

    Article  Google Scholar 

  14. Lu, Z. Q. J. (2010). The elements of statistical learning: Data mining, inference, and prediction, 2nd edition. Journal of the Royal Statistical Society Series a-Statistics in Society, 173, 693–694.

    Article  Google Scholar 

  15. Long, Z., Jing, B., Yan, H., Dong, J., Liu, H., Mo, X., Han, Y., & Li, H. (2016). A support vector machine-based method to identify mild cognitive impairment with multi-level characteristics of magnetic resonance imaging. Neuroscience, 331, 169–176. https://doi.org/10.1016/j.neuroscience.2016.06.025.

    Article  Google Scholar 

  16. Yan, T., Wang, Y., Weng, Z., Du, W., Liu, T., Chen, D., et al. (2019). Early-stage identification and pathological development of Alzheimer's disease using multimodal MRI. Journal of Alzheimer's Disease, 68(3), 1013–1027. https://doi.org/10.3233/jad-181049.

    Article  Google Scholar 

  17. Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: A tutorial overview. Neuroimage, 45(1), S199–S209. https://doi.org/10.1016/j.neuroimage.2008.11.007.

    Article  Google Scholar 

  18. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003.

    Article  Google Scholar 

  19. He, B., Dai, Y. K., Astolfi, L., Babiloni, F., Yuan, H., & Yang, L. (2011). eConnectome: A MATLAB toolbox for mapping and imaging of brain functional connectivity. Journal of Neuroscience Methods, 195(2), 261–269. https://doi.org/10.1016/j.jneumeth.2010.11.015.

    Article  Google Scholar 

  20. Hosseini, S. M., Hoeft, F., & Kesler, S. R. (2012). GAT: A graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks. PLoS One, 7(7), e40709. https://doi.org/10.1371/journal.pone.0040709.

    Article  Google Scholar 

  21. Cui, Z., Zhong, S., Xu, P., He, Y., & Gong, G. (2013). PANDA: A pipeline toolbox for analyzing brain diffusion images. Frontiers in Human Neuroscience, 7, 42. https://doi.org/10.3389/fnhum.2013.00042.

    Article  Google Scholar 

  22. Wang, J. H., Wang, X. D., Xia, M. R., Liao, X. H., Evans, A., & He, Y. (2015). GRETNA: A graph theoretical network analysis toolbox for imaging connectomics. Frontiers in Human Neuroscience, 9, 16. https://doi.org/10.3389/fnhum.2015.00386.

    Article  Google Scholar 

  23. van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy Array: A structure for efficient numerical computation. Computing in Science & Engineering, 13(2), 22–30.

    Article  Google Scholar 

  24. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

    MathSciNet  MATH  Google Scholar 

  25. Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., Thirion, B., & Varoquaux, G. (2014). Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 8, 14. https://doi.org/10.3389/fninf.2014.00014.

    Article  Google Scholar 

  26. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/Mcse.2007.55.

    Article  Google Scholar 

  27. Ramachandran, P., & Varoquaux, G. (2011). Mayavi: 3D visualization of scientific data. Computing in Science & Engineering, 13(2), 40–50. https://doi.org/10.1109/Mcse.2011.35.

    Article  Google Scholar 

  28. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273–289. https://doi.org/10.1006/nimg.2001.0978.

    Article  Google Scholar 

  29. Taguchi, Y. H., Iwadate, M., & Umeyama, H. (2015). Principal component analysis-based unsupervised feature extraction applied to in silico drug discovery for posttraumatic stress disorder-mediated heart disease. BMC Bioinformatics, 16, 139. https://doi.org/10.1186/s12859-015-0574-4.

    Article  Google Scholar 

  30. Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441. https://doi.org/10.1037/h0071325.

    Article  MATH  Google Scholar 

  31. Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to Student's t-test and the Mann-Whitney U test. Behavioral Ecology, 17(4), 688–690. https://doi.org/10.1093/beheco/ark016.

    Article  Google Scholar 

  32. Yilmaz, E. (2013). An expert system based on fisher score and LS-SVM for cardiac arrhythmia diagnosis. Computational and Mathematical Methods in Medicine, 2013, 1–6. https://doi.org/10.1155/2013/849674.

    Article  MathSciNet  MATH  Google Scholar 

  33. Khazaee, A., Ebrahimzadeh, A., & Babajani-Feremi, A. (2016). Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease. Brain Imaging and Behavior, 10(3), 799–817. https://doi.org/10.1007/s11682-015-9448-7.

    Article  Google Scholar 

  34. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B-Methodological, 58(1), 267–288.

    MathSciNet  MATH  Google Scholar 

  35. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B-Statistical Methodology, 67, 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x.

    Article  MathSciNet  MATH  Google Scholar 

  36. Painsky, A., & Rosset, S. (2017). Cross-validated variable selection in tree-based methods improves predictive performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(11), 2142–2153. https://doi.org/10.1109/Tpami.2016.2636831.

    Article  Google Scholar 

  37. Orru, G., Pettersson-Yeo, W., Marquand, A. F., Sartori, G., & Mechelli, A. (2012). Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neuroscience and Biobehavioral Reviews, 36(4), 1140–1152. https://doi.org/10.1016/j.neubiorev.2012.01.004.

    Article  Google Scholar 

  38. Coomans, D., & Massart, D. L. (1982). Alternative k-nearest neighbor rules in supervised pattern-recognition .3. Condensed nearest neighbor rules. Analytica Chimica Acta, 138(Jun), 167–176. https://doi.org/10.1016/S0003-2670(01)85299-5.

    Article  Google Scholar 

  39. Matsugu, M., Mori, K., Mitari, Y., & Kaneda, Y. (2003). Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Networks, 16(5–6), 555–559. https://doi.org/10.1016/S0893-6080(03)00115-1.

    Article  Google Scholar 

  40. Mehmood, A., Maqsood, M., Bashir, M., & Shuyuan, Y. (2020). A deep Siamese convolution neural network for multi-class classification of Alzheimer disease. Brain Sciences, 10(2). https://doi.org/10.3390/brainsci10020084.

  41. Alves, G. S., Knochel, V. O., Knochel, C., Carvalho, A. F., Pantel, J., Engelhardt, E., et al. (2015). Integrating Retrogenesis theory to Alzheimer's disease Pathology: Insight from DTI-TBSS investigation of the white matter microstructural integrity. Biomed Research International, https://doi.org/10.1155/2015/291658.

  42. Nir, T. M., Jahanshad, N., Villalon-Reina, J. E., Toga, A. W., Jack, C. R., Weiner, M. W., Thompson, P. M., & Alzheimer's Disease Neuroimaging Initiative (ADNI). (2013). Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging. Neuroimage-Clinical, 3, 180–195. https://doi.org/10.1016/j.nicl.2013.07.006.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge all the participants, clinical doctors and researchers at the Department of Neurology, XuanWu Hospital of Capital Medical University. We thank Tianyu Zhang for his help and contribution during MR image data processing.

Funding

This work was supported by the National Key Research and Development Program of China under grant 2018YFC0115400, the National Natural Science Foundation of China (Grant No. 81671776, 61727807, 81601454), the Beijing Municipal Science and Technology Commission (Z191100010618004).

Author information

Authors and Affiliations

Authors

Contributions

ML and TL contribute equally to this study. ML wrote the manuscript. TL verified the analytical methods. YW and YF contributed the toolkit coding. YX performed the data collection. TY conceived of the presented idea. JW supervised the project.

Corresponding author

Correspondence to Tianyi Yan.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethics Approval

This study was approved by the Medical Research Ethics Committee and the Institutional Review Board of Xuan Wu Hospital (Clinical Trials.gov identifier: NCT02353884 and NCT02225964).

Consent to Participate

All participants were provided with written informed consent, which they signed prior to any experimental procedures.

Consent to Publication

All authors discussed the study, read the manuscript, and approved its submission to your journal. The manuscript has not been published previously, and it is not under consideration for publication elsewhere.

Code Availability

The code that support the findings of this study are openly available at https://github.com/BIT-Brain-Lab/Brain-Sort.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Liu, T., Wang, Y. et al. BrainSort: a Machine Learning Toolkit for Brain Connectome Data Analysis and Visualization. J Sign Process Syst 94, 485–495 (2022). https://doi.org/10.1007/s11265-020-01583-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-020-01583-6

Keywords

Navigation