Skip to main content
Log in

Visualization Analysis of Knowledge Network Research Based on Mapping Knowledge

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

With the acceleration of economic information, networking, globalization and the new technological revolution, more and more scholars abroad have begun to pay attention to the research of knowledge networks. Some scholars even regard knowledge networks as a new field in the field of knowledge management research theoretical paradigm. This paper takes the research literature of knowledge network in Web of Science as the research object, and uses the information visualization software Cite Space, which is the world’s leading information, to visualize the geographical distribution of relevant knowledge networks in the international context by using traditional bibliometric methods and information visualization tools. High-impact authors, core literature, research hotspots for quantitative research and visual analysis, showing the classic literature and research hotspots and frontier fields of international knowledge management research in the form of maps, and analyzing knowledge maps and literature materials, content analysis, and induction The combination of methods and other methods to analyze and summarize the current research status of international knowledge management can provide useful reference for knowledge networks and related research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lombardo, V., Piana, F., & Mimmo, D. (2018). Semantics–informed geological maps: Conceptual modeling and knowledge encoding[J]. Computers & Geosciences, 116, 12–22.

    Article  Google Scholar 

  2. Kane, L., & Boulle, M. (2018). ‘This was different’: transferring climate mitigation knowledge practices south to south with the MAPS programme[J]. Climate Policy, 18(9), 1–12.

    Article  Google Scholar 

  3. Amir, S., & Aït-Kaci, H. (2017). An efficient and large-scale reasoning method for the semantic Web[J]. Journal of Intelligent Information Systems, 48(3), 1–22.

    Google Scholar 

  4. Siddiqui, I. F., Lee, U. J., Abbas, A., et al. (2017). Optimizing lifespan and energy resources of smart meter in a green cloud-based smart grid[J]. IEEE access : practical innovations, open solutions, 99, 1–15.

    Google Scholar 

  5. Ying, C., & Wu, C. (2017). The hot spot transformation in the research evolution of maker[J]. Scientometrics, 113(3), 1307–1324.

    Article  Google Scholar 

  6. Wang, Y., Zheng, J., Zhang, A., et al. (2017). Visualization maps for the evolution of research hotspots in the field of regional health information networks[J]. Inform Health Soc Care, 43(56), 1–21.

    Google Scholar 

  7. Berlanga, R., Nebot, V., & Pérez, M. (2014). Tailored semantic annotation for semantic search[J]. Journal of Web Semantics, 30(C), 69–81.

    Google Scholar 

  8. Gacitua-Decar, V., & Pahl, C. (2017). Structural Process Pattern Matching Based on Graph Morphism Detection[J]. International Journal of Software Engineering & Knowledge Engineering, 27(2), 153–189.

    Article  Google Scholar 

  9. Gutierrez, C., Hurtado, C. A., & Mendelzon, A. O. (2011). Foundations of semantic web databases[J]. Journal of Computer and System Sciences, 77(3), 520–541.

    Article  MathSciNet  Google Scholar 

  10. Tamer, M. (2016). ÖZSU. A survey of RDF data management systems[J]. Frontiers of Computer Science, 10(3), 418–432.

    Article  Google Scholar 

  11. Zou, L., Zsu, M. T., & Graph-Based, R. D. F. (2017). Data Management[J]. Data Science and Engineering, 2(1), 56–70.

    Article  Google Scholar 

  12. Wylot, M., Hauswirth, M., & Cudré-Mauroux, P. (2018). RDF data storage and query processing schemes: A survey[J]. ACM Computing Surveys (CSUR), 51(4), 84.

    Article  Google Scholar 

  13. Wen, D., Qin, L., Zhang, Y., et al. (2017). Efficient structural graph clustering: an index-based approach[J]. Proceedings of the Vldb Endowment, 11(3), 243–255.

    Article  Google Scholar 

  14. Angles, R., Arenas, M., & Barcelo, P. (2016). Foundations of Modern Query Languages for Graph Databases[J]. Acm Computing Surveys, 50(5), 68.

    Google Scholar 

  15. McCune, R. R., Weninger, T., & Madey, G. (2015). Thinking like a vertex: a survey of vertex-centric frameworks for large-scale distributed graph processing[J]. ACM Computing Surveys (CSUR), 48(2), 25.

    Article  Google Scholar 

  16. Kaoudi, Z., & Manolescu, I. (2015). RDF in the clouds: a survey[J]. Vldb Journal, 24(1), 67–91.

    Article  Google Scholar 

  17. Abdelaziz, I., Harbi, R., & Khayyat, Z. (2017). A survey and experimental comparison of distributed SPARQL engines for very large RDF data[J]. Proceedings of the VLDB Endowment, 10(13), 2049–2060.

    Article  Google Scholar 

  18. Heidari, S., Simmhan, Y., & Calheiros, R. N. (2018). Scalable graph processing frameworks: A taxonomy and open challenges[J]. ACM Computing Surveys (CSUR), 51(3), 60.

    Article  Google Scholar 

  19. Kalavri, V., Vlassov, V., & Haridi, S. (2018). High-level programming abstractions for distributed graph processing[J]. IEEE Transactions on Knowledge and Data Engineering, 30(2), 305–324.

    Article  Google Scholar 

  20. Yan, D., Bu, Y., & Tian, Y. (2017). Big graph analytics platforms[J]. Foundations and Trends in Databases, 7(1–2), 1–195.

    Article  Google Scholar 

  21. Qiu, H., Noura H, & Qiu, M. A. (2019). A User-Centric Data Protection Method for Cloud Storage Based on Invertible DWT[J]. IEEE Transactions on Cloud Computing, 150:1–2. https://doi.org/10.1109/TCC.2019.2911679.

  22. Gai, K., Qiu, M., & Zhao, H. (2017). Privacy-preserving data encryption strategy for big data in mobile cloud computing[J]. IEEE Transactions on Big Data, 6(1), 1–12.

    Article  Google Scholar 

  23. Gai, K., Qiu, M., Zhao, H. (2016). Security-Aware Efficient Mass Distributed Storage Approach for Cloud Systems in Big Data[J]. 2016 IEEE 2nd International Conference on Big Data Security on Cloud, IEEE International Conference on High Performance and Computing, S. IEEE International Conference on Intelligent Data and Security, 4:140–145.

  24. Shao, Z., Xue, C., & Zhuge, Q. (2006). Security protection and checking in embedded system integration against buffer overflow attacks[J]. IEEE Transactions on Computers, 55(4), 443–453.

    Article  Google Scholar 

  25. Makari, F., Teflioudi, C., Gemulla, R., et al. (2015). Shared-memory and shared-nothing stochastic gradient descent algorithms for matrix completion[J]. Knowledge & Information Systems, 42(3), 493–523.

    Article  Google Scholar 

  26. Coleman, G. A. L., & Nelson, R. P. (2018). On the formation of compact planetary systems via concurrent core accretion and migration[J]. Monthly Notices of the Royal Astronomical Society, 457(3), 2480–2500.

    Article  Google Scholar 

  27. Pak, I., & Panova, G. (2017). On the complexity of computing Kronecker coefficients[J]. Computational Complexity, 26(1), 1–36.

    Article  MathSciNet  Google Scholar 

  28. Pokorny, J. (2013). NoSQL databases: a step to database scalability in web environment[J]. International Journal of Web Information Systems, 9(1), 278–283.

    Article  MathSciNet  Google Scholar 

  29. Subhrajyoti Bordoloi, B. K. (2014). Designing Graph Database Models from Existing Relational Databases[J]. International Journal of Computer Applications, 74(1), 25–31.

    Article  Google Scholar 

  30. Borghi, A. M., Binkofski, F., Castelfranchi, C., et al. (2017). The challenge of abstract concepts[J]. Psychological Bulletin, 143(3), 263–292.

    Article  Google Scholar 

  31. Papoulias, N., Denker, M., Ducasse, S., et al. (2017). End-user abstractions for meta-control: Reifying the reflectogram[J]. Science of Computer Programming, 140, 2–16.

    Article  Google Scholar 

  32. Marinka, Z., Monica, A., & Jure, L. (2018). Modeling polypharmacy side effects with graph convolutional networks[J]. Bioinformatics, 34(13), i457–i466.

    Article  Google Scholar 

  33. Hu, P., Gu, D. X., & Zhu, Y. (2013). Collaborative case-based reasoning for knowledge discovery of elders health assessment system[J]. Open Biomed Eng J, 8(1), 68–74.

    Article  Google Scholar 

  34. Benferhat, S., Dubois, D., & Prade, H. (2013). Argumentative inference in uncertain and inconsistent knowledge bases[J]. Uncertainty in Artificial Intelligence :411–419.

Download references

Acknowledgements

This work was supported by the Science and Technology Project of State Grid Corporation of China (Project number: 5211XT180045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Jiang, Y., Fan, H. et al. Visualization Analysis of Knowledge Network Research Based on Mapping Knowledge. J Sign Process Syst 93, 333–344 (2021). https://doi.org/10.1007/s11265-020-01595-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-020-01595-2

Keywords

Navigation