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Abstract

Dry casks for spent nuclear fuel (SNF) ensure the safe storage of SNF and pro-
vide radiation shielding. However, the presence of the thick casks encompassing
several layers of steel and concrete makes inspection of the SNF a challeng-
ing task. Fast neutron interrogation is a viable method for the nondestruc-
tive assay of dry storage casks. In this study, we performed a Monte Carlo
simulation-based study associated with a machine-learning-based image recon-
struction method to verify the content of SNF dry storage casks. We studied
the use of neutron transmission and back-scattered measurements to assess the
potential damage to fuel assemblies or fuel pin diversion during transportation
of dry casks. We used Geant4 to model a realistic HI-STAR 100 cask, MPC-
68 canister and basket, and GE-14 fuel assembly irradiated by a D-T neutron
generator. Several bundle diversion scenarios were simulated. The angular dis-
tribution of the neutrons scattered by the cask was used to identify the diversions
inside the fuel cask. A fuel bundle with at least 75% of its pins removed can be
identified with a drop in the back-scattered signature larger than 2σ compared
with a fully loaded scenario. We combined an iterative reconstruction algorithm
with a convolutional neural network (CNN) to obtain a cross-sectional image
of the fuel inside the cask. The proposed imaging approach allows locating
the position of a missing fuel bundle with at least 75% of the pins removed
when performing tomographic imaging of a canister with an overall scan time of
less than two hours, when using a commercial neutron generator with a source
strength of 1010 n/s in the 4π solid angle.

Keywords: Neutron tomography, Spent nuclear fuel, Dry cask storage,
Nondestructive assay, Fast Iterative Shrinkage-Thresholding Algorithm
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1. Introduction

Spent nuclear fuel (SNF) bundles can be stored in water pools, dry storage
and transport casks, and vault-type storage facilities [1]. By the end of 2020,
there are 94 operating commercial nuclear reactors in the United States. Most
of water pools at reactor sites have almost reached their full capacity [2]. When
the capacity of the water pool is reached or there is a need to transfer SNF to
an away-from-reactor (AFR) reprocessing plant or a long-term storage site, the
SNF is removed from the water pool and loaded into the interim dry storage
cask or transfer cask before transportation. Therefore, the application of the
dry cask storage and transport service is becoming more and more important
with the increasing need to transfer SNF bundles from an at-reactor (AR) pool
to an AFR storage [3]. Verifying the integrity of the SNF without reopening
the sealed containers or dry casks is an open technological challenge.

Continuity of knowledge (CoK) to ensure that the information on spent fuel
is uninterrupted and authentic [4] is typically ensured using seals and visual
observation. However, some cases may require reestablishment of inventory
after the loss of CoK. Currently, there are no generally accepted or fully verified
methods to reestablish the CoK without reopening the dry casks. Therefore, a
reliable method to non-destructively assay SNF casks and verify their content
and integrity is needed.

There have been several approaches proposed for the verification and detec-
tion of SNF dry casks. These approaches are mostly simulation-based studies
and some have been extended to experimental verification. Scientists at Idaho
National Laboratory (INL) developed the Compton Dry-Cask Imaging Scanner
(CDCIS) which identified the presence of SNF based on passive gamma rays
emitted by SNF [5]. The CDCIS failed when tested at Doel, Belgium nuclear
power plant due to the thick ballistic shield on top of the Belgian cask [5].
Cosmic-ray muon computed tomography is another technique that has been
both theoretically and experimentally evaluated. Researchers from Los Alamos
National Laboratory (LANL) and the University of New Mexico applied filtered
back projection to reconstruct images using muon scattering and attenuation
signatures, respectively [6]. Researchers from LANL, the University of New
Mexico, and INL measured MC-10 cask using cosmic-ray muon computed to-
mography [7]. Researchers from Oak Ridge National Laboratory conducted
a study to image the dry storage casks using a simple Point of Closest Ap-
proach (PoCA) algorithm with muons [8][9]. Other approaches include using
Thomson-scattering quasi-monoenergetic photon sources on a MC-10 cask that
can be applied to MPC-24, MPC-32 and MPC-68 casks [10], using high-energy
X-ray computed tomography [11]as well as high-energy neutron transmission
analysis [2]. Among these proposed verification methods, the most promising
one seems to be the cosmic-ray muon tomography method. However, it requires
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a long inspection time of more than one day and thus it cannot be used to verify
the cask’s integrity in case of an accident occurring during transportation.

In this paper, we present a method based on 14.1-MeV neutron tomography.
This method aims at identifying potential fuel diversion scenarios. We exploit
the penetrating power of 14.1 MeV DT neutrons together with reconstruction
algorithms to improve the method’s sensitivity. First, we studied the sensitivity
of the inspection method to missing assemblies. We studied the signatures that
showed the highest correlations with the missing SNF assembly. Then, we used
the identified signatures to carry out the neutron tomography technique and
obtain the reconstructed cross-sectional images of the canister. The results
showed that for an inspection consisting of 12 scans, the total measurement
time is less than 2 hours considering an intrinsic detector efficiency of 60%.

2. Methods

We simulated a realistic dry cask system, which consists of a HI-STAR-
100 cask, MPC-68 canister and basket, and GE-14 fuel assembly using Geant4
toolkit [12]. In this section, we introduce the simulated geometry of the cask
and the computational methods used to locate missing fuel bundles. We simu-
lated various fuel assembly diversion scenarios and obtained the neutron back-
scattered signature that is related with the missing bundle locations. We used
the neutron back-scattered signature and a bi-dimensional image reconstruction
algorithm and a CNN model to obtain reconstructed images of the spent fuel
assemblies.

2.1. Spent fuel dry cask model

The cask overpack is a thick layer of stainless steel and has an additional
neutron-absorbing layer made of Holtite-A alongside the sidewall. The overall
height of the cask overpack is over 5 m and its maximum diameter is approxi-
mately 2.5 m.

The canister and basket can hold 68 boiling water reactor (BWR) fuel as-
semblies. Each assembly encompasses 92 SNF rods arranged in a 10×10 square
matrix. The assembly contains two water rods at the center, each occupying
four-pin locations, and seventy full-length fuel rods, fourteen part-length fuel
rods as well as eight tie rods. The full-length fuel rods are approx. 400 cm long,
with approx. 380 cm of fuel pellets (the remaining length includes a plenum
region and the connecting shanks), whereas the part-length fuel rods are ap-
prox. 250-cm long, with approx. 213 cm of fuel pellets [13]. The tie rods are
screwed into the lower tie plate and are used to support the assembly during
the operation of the fuel handling process [13].

2.2. Geant4 model and simulation setup

We used the Geant4 toolkit to simulate the dry cask system [14] and the in-
terrogating source. The physics list used in the Geant4 model was the QGSP BERT HP,
which provides high-precision neutron transport simulation at energies below
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20 MeV. The source term was simulated as a 14.1-MeV mono-energetic neu-
tron beam. It was placed at the mid-plane of the cask targeting at the side
surface. This energy corresponds to the energy of the neutrons produced by
a Deuterium-Tritium (D-T) generator. The D-T generator produces 14.1 MeV
neutrons through the following fusion reaction between deuteron ions (D) and
tritium ions (T): D+T −→ n+ 4He+ 17.6 MeV [15]. The neutron carries 80%
(i.e., 14.1 MeV ) of the released energy.

The visualization of the Geant4 model is shown in Fig. 1. Fig. 1b shows the
realistic layout of the dry cask system, including the neutron absorbing shielding
layer, cask overpack, canister, fuel basket structures (honeycomb structure and
neutron absorbing panel) and supports, as well as fuel bundles (fuel rods, water
rods and tie rods). The orientation of the inner fuel assembly deployment is
known on the outside of the dry cask sidewall. The outermost layer shown
in blue is the neutron shield layer of the cask. In the image reconstruction
analysis, we removed both the neutron shield and the cask and kept only the
canister. During specific stages of the SNF bundles’ transfer, such as moving
the SNF from the water pool into the transfer cask or from the transfer cask
to the final storage place, the SNF could be contained only in the canister and
not surrounded by the thick metal cask and the neutron shield. Hence, the
nondestructive assay (NDA) of the assemblies without neutron shield can be
performed during these transfer procedures.

(a) Side view of the cask
model. (b) Cross-section A. (c) Homogenized Geant4 model.

Figure 1: The detailed and simplified Geant4 models.

Fig. 1a and Fig. 1b show a detailed schematic of the SNF within the cask.
We developed a simplified model with homogenized fuel assembly as shown in
Fig. 1c to reduce simulation run-time while keeping a realistic fuel composition.
The structure, compositions and layout of the simplified model are analogous
to the original realistic model. The only difference between the two models
is that in the homogenized composition of the fuel assembly, each assembly is
modeled as a bulk volume without the geometric detail of single fuel pins. The
fuel pellets are composed of ceramic uranium dioxide and gadolinium oxide. In
the simplified model, the fuel assembly contains a mixture of the same material
compositions distributed evenly throughout the whole assembly volume and
therefore with an overall density of 3.98 g/cm3. While yielding similar results
in terms of neutron scattered and transmitted distribution, the run-time of the
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simplified model is approximately eight times faster than the detailed model.

2.3. Neutron back-scattered and transmitted signatures

We identified signatures that were highly correlated to the presence of SNF
assemblies, while being minimally affected by the neutron attenuation. Inspec-
tion of spent-fuel cask is challenging because of the limited penetrability, even
of high energy 14.1 MeV neutrons. The half-value layer (HVL) exerted by spent
fuel to 14.1 MeV neutrons is 3.272 cm. With each fuel rod’s diameter equal
to approx. 1 cm [13], we can expect the intensity of the beam to be reduced
to less than 50% by only four fuel rods. The strong attenuation caused by the
fuel assemblies will dramatically reduce the probability of detection neutrons
transmitted through the canister. We identified high-efficiency, information-
rich features to address this challenge. The combination of back-scattered and
transmitted neutrons was used to identify the defects in the fuel assemblies.

We detected the neutrons emerging from the surface of the dry cask under
several fuel assembly mis-loading scenarios. All neutrons that incident into
the detectors are contributing to the gross neutron counts. We consider using
organic scintillation detectors when estimating the actual measurement time
and assume the intrinsic detection efficiency to be 60%. Since the fuel assembly
layout is symmetric, we simulated one-quarter of the cask highlighted in Fig.
2 within the dashed red rectangle box. The neutron beam was simulated as
conical for variance reduction, and the yellow arrow in Fig. 2 represents the
neutron beam direction. We simulated eight fuel assembly anomalous scenarios
and compared the corresponding results with that of a fully-loaded cask (referred
to as Case0). In each anomalous scenario, we removed one fuel assembly. These
scenarios are illustrated in Fig. 3.

Figure 2: Several SNF assembly diversion scenarios.

2.4. Bi-dimensional image reconstruction through iterative algorithm

Spent fuel verification procedures are generally verification-based, where a
previous measurement of the item is compared to the current one to ensure
CoK. This procedure would greatly benefit from an imaging approach, which is
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Figure 3: Eight anomalous cases for one SNF assembly missing scenario.

more informative compared to a gross counting measurement performed outside
the cask. After simulating the correlation of the back-scattered signature, as
reported in Section 2.3, we developed an imaging method to locate the missing
bundles in a 2D cross-sectional view of the fuel region. We assumed the model
of the fuel bundles as a linear forward model. The linearity assumption is based
on the fact that neutrons resulting from fission reactions can be neglected and
therefore the problem is similar to an X-ray tomography where the attenuation
coefficient is replaced by the neutron removal macroscopic cross section. Tra-
ditional image reconstruction methods such as filtered back projection (FBP)
derive the attenuation of radiation through an object from the length of the
radiation path. FBP uses the estimated linear attenuation coefficient to form
the attenuation profiles, then reconstructs images of the object through inverse
Radon transform with mathematical filters applied to remove the blur from
back-projection. However, due to the shielding effect of the fuel assemblies,
this method needs a long measurement time to obtain transmitted signals that
enable satisfactory imaging. We used instead a linear-inverse approach solved
through a sparsity-promoting algorithm, proven to yield improved imaging per-
formance when compared to FBP [16]. The distribution of fuel assemblies inside
the canister can be considered as a sparse matrix if we treat the location of the
missing fuel rods as 1 and other locations 0. The image reconstruction with
sparse data can be achieved by solving a regularized linear inverse problem
using the fast-iterative shrinkage-thresholding algorithm (FISTA) [17].

In the inspection of the dry cask, we discretized the region-of-interest (ROI)
of the fuel assembly into N × N pixels as shown in Fig. 4, where N = 10 in
this example. Then, we performed the NDA at 12 angles around the cask, 30o

apart from each other (Fig. 4). The selected number of scans is a trade-off
between minimizing the relative uncertainty associated with the measurement
at each angle while keeping the measurement within a reasonable time frame.
In each configuration, we removed one assembly from the fully-loaded canister
and measured the back-scattered neutrons within the selected 36 detection re-
gions (starting from the neutron beam travelling direction, each detection region
occupies 10o detection angles and thus the surface of 360o detection angles is
divided into 36 detection regions). We obtained a readout y with M = 12× 36
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Figure 4: An example of system discretization and neutron beam direction in each scan is
indicated by the arrows.

entries for each missing fuel assembly scenario, where 36 is the number of de-
tection regions. Therefore, the response matrix A of the system is a M × N2

matrix, with the column i (i = 1 to 100) being the readout of the system for
the canister with the fuel portion corresponding to the ith pixel removed. We
assume the system to be linear, i.e., the readout y of the canister with unknown
fuel assembly removed is a linear function of the true fuel assembly distribution
x:

y = Ax + n (1)

where n stands for the random observation noise.
Here the noise term n is modeled by Gaussian random noise and the un-

known fuel assembly distribution x is estimated by solving the following penal-
ized least-square problem, subject to the constraint that x cannot be negative:

x̂ = argmin
x≥0

[
1

2
‖y −Ax‖22 + λ‖x‖1

]
(2)

In Eq. 2, ‖ · ‖p denotes the `p norm. The first term in the function is a
quadratic data fidelity term and the second term is a regularization parameter.
λ > 0 provides a trade-off between fidelity to the measurements and noise
sensitivity. This regularization parameter promotes solutions where x is sparse.
This equation can be solved using the FISTA algorithm, as detailed the following
steps.

FISTA with constant step size [17]:
Input: A,y, L: The Lipschitz constant of A, λ (depending on noise level).
Procedure:

1. Set the initial values:
z(1) = 0, x(0) = 0, t1 = 1 and kmax : total number of iterations

2. When 1 ≤ k ≤ kmax is satisfied, the algorithm will do an iteration until
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kmax is reached with the following equations:

x(k) = z(k) − 1

L
AT (Az(k) − y) (3)

x(k) = max(x(k) − λ

L
, 0) (4)

tk+1 =
1 +

√
1 + 4t2k
2

(5)

z(k+1) = x(k) +
tk − 1

tk+1
(x(k) − x(k−1)) (6)

Output: x̂.
It will finally return the value x̂ = x(k), i.e., the reconstructed image, when

the set total number of iterations is reached.
The number of maximum iterations kmax is determined based on the SNR

of the reconstructed images and also the norm of ‖y −Ax‖.

2.5. Bi-dimensional Image Reconstruction through Machine Learning

Neural networks have been used in nuclear engineering for multiple applica-
tions, ranging from data mining [18] to radiation detection [19].

We applied a CNN model to de-noise the reconstructed images obtained
from FISTA to improve the image quality. Fig. 5 shows the training process
of the proposed CNN model. The CNN model is based on the 2D-Unet neural
network and is pre-trained using the reconstructed images from FISTA. We use
high-quality images as the training label and low-quality images as the network
input. The high-quality images were generated using simulated data with low
relative uncertainty of counts, and the low-quality images were generated using
simulated data with few source neutrons, resulting in a high relative uncertainty
of counts. The mean squared error between the network output and the training
label was used a loss function of the CNN model and minimized during the
training process. Based on the FISTA algorithm, the image size of the CNN
input is determined as 40× 40. The CNN featured four convolutional layers, a
3× 3 convolutional filter and a unit batch size. The number of training epochs
that minimized the loss function was selected.

3. Results

3.1. Analysis of neutron back-scattered signature

We detected neutrons in the 0.1−14.1MeV range emerging from the surface
of the canister and analyzed the sensitivity of the gross neutron count to missing
fuel rods and whole assemblies as a function of the angle with respect to the
interrogating beam axis.

Fig. 6 shows the neutron counts in the 1o-10o interval. The grey bar repre-
sents the counts detected from the fully loaded case (Case0) with an uncertainty
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Figure 5: Block diagram of the training process of the CNN architecture.

of ±2σ. The other eight data points indicate the counts of neutrons for the
above-mentioned assembly missing cases (Case1-Case8) with an uncertainty of
±2σ. Fig. 6 shows that the neutron counts reaching the surface of the canister
may change significantly with the number and position of the missing assem-
blies when compared to the fully loaded case. This signature can be used in the
identification of the mis-loaded SNF assemblies.

Figure 6: Back-scattered neutrons emerged from the surface of the canister in 1o-10o for
different cases (nps = 108).

Fig. 7 shows the variation of the neutron angular distribution with the
position of the mis-loaded assembly. The angular distribution of the neutron
counts for various assembly missing cases shows that there is a statistically
significant drop (> ±2σ) of the counts compared to the fully loaded case, i.e.
Case0, at the 10o-30o angle with respect to the neutron beam direction, for all
the investigated assembly missing cases.

We also performed the simulation with 25%, 50%, 75%, and 100% (i.e., one
whole fuel assembly removed from the canister) fuel rods removed to study
the sensitivity of our method to the scenarios where some of the fuel rods are
removed within one fuel assembly. Fig. 8 shows the comparison of neutron
counts with different partially loaded configurations for Case2. The grey bar
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Figure 7: Angular distribution of neutron counts under 1o-90o for Case0-Case8 (nps = 108).

represents the neutron counts of the fully-loaded case with an uncertainty of
±2σ. From the results, we can identify with a confidence of ±2σ a partially
loaded fuel assembly with a fraction of at least 75% of the rods being removed.

Figure 8: Neutron counts detected in the 21o-30o interval for the assembly on the
bottom-right corner loaded with 25%, 50%, 75% and 100% of the fuel pins (the arrow in the

left figure indicates the beam direction, nps = 108).

The transmitted neutron signature is shown in Fig. 9. One can observe a
significant difference in the neutron distribution between the single fuel assem-
bly missing at the center region and the fully loaded cases, with an uncertainty
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of ±2σ. The transmitted neutron signature can thus be used to inspect inner-
most bundles. However, an interrogating neutron fluence at least one order of
magnitude higher (for example, nps = 1010) is needed to obtain statistically sig-
nificant results, compared to the analysis based on the back-scattered neutron
signature.

(a) Incident angle: 0o. (b) Incident angle: 30o. (c) Incident angle: 45o.

Figure 9: Distribution of the transmitted neutrons for different incident angles (fan beam,
nps = 108).

3.2. Image reconstruction

3.2.1. Results from FISTA

We used the Geant4 model to generate the response matrix, hence accurately
capturing the neutron transport physics in the canister. Simulated and noise-
corrupted casks with various configurations of missing fuel bundles were used to
test the reconstruction algorithm. We defined a finer response matrix with N =
20 to improve the sensitivity of the reconstruction algorithm. The dimension of
the finer response matrix is M × 202, with each pixel representing the system
response to one-fourth fuel assembly removed from the canister. Fig. 10a and b
show the simulated fine response matrix for detection angles in the 10o-20o and
20o-30o intervals, respectively, where the interrogating beam rotated around the
cask in 30o intervals (y axis). The color bar shows the intensity of each pixel
in a linear scale. From the response matrix, the intensity of the corresponding
pixel drops as expected when a fuel assembly is removed.

The noise associated with the measured data is due to statistical and sys-
tematical noise sources. While statistical noise depends mainly on the number
of acquired counts, systematical noise sources may range from detector gain
drift to bias in the source position. In our simulated model, we only considered
the statistical random noise. Hence, the noise level decreases with the measure-
ment time. With a measurement time less than 10 min for one scan, we expect
an average relative uncertainty associated with the counts at the detectors less
than ±0.6% (1 SD). When the noise level is low (measurement time > 10 min
per scanning angle), we can obtain well-reconstructed images that allow to ac-
curately identify the location of the missing fuel assemblies, as shown in Fig.
11. We reconstructed several cases with one missing fuel assembly, at different
locations. We simulated five cases named as Case-A1 to Case-A5, as shown in
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(a) System response within detection angle
10o-20o.

(b) System response within detection angle
20o-30o.

Figure 10: The finer response matrix in two detection regions (nps = 107, the colorbar repre-
sents the response of the system to fuel rods missing in each pixel within the corresponding
detection angle range).

(a) Case-A1. (b) Case-A2. (c) Case-A3.

(d) Case-A4. (e) Case-A5.

Figure 11: The reconstructed images of missing fuel bundles with changing location from the
peripheral region to the center of the canister (nps ≥ 109added, the colorbars represents the
intensity of each pixel in the reconstructed images and an increased intensity means a possible
missing fuel assembly location). In each reconstructed image, the true location of the missing
fuel assembly is highlighted by the red box.

Fig. 11. The pixel with the highest intensity corresponds to the identified as-
sembly location by the algorithm. In these five cases, the missing fuel assembly
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is always correctly located, despite of its location.
We then reconstructed four cases with 75% of pins removed in one fuel

assembly, located along the cask diagonal to investigate the penetrability of the
NDA method. The reconstructed images are shown in Fig. 12.

(a) The reconstructed image of Case-D1. (b) The reconstructed image of Case-D2.

(c) The reconstructed image of Case-D3. (d) The reconstructed image of Case-D4.

Figure 12: The reconstructed images for fuel assembly with 75% of pins removed along the
diagonal of the canister (nps = 107, the colorbars represents the intensity of each pixel in
the reconstructed images and an increased intensity means possible missing fuel assembly
locations).

In Fig. 12, we can successfully identify the missing fuel assemblies that are
close to the sidewall of the canister. As the location of the missing fuel assembly
moves from the peripheral to the center of the canister, the sensitivity of the
method drops.

We added Gaussian noise to the readout data y to generate noise-corrupted
input data and evaluate the effect of noise on the reconstructed images. The
noisy input data have an SNR ranging from 18 to 65. We calculated the receiver
operating characteristic (ROC) curve for different noise levels as shown in Fig.
13, for the case study of a missing fuel assembly at the bottom-right corner
(i.e., Case7). In the ROC, a fuel-missing case corresponds to a pixel intensity of
the reconstructed image higher than the threshold. Conversely, a full-assembly
case corresponds to a pixel intensity lower than the threshold. True positive
(TP) cases refer to correctly identified fuel-missing cases. False positive (FP)
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Figure 13: The ROC curves for different noise levels.

cases refer to cases that are identified as fuel-missing whereas in reality the
assemblies are full. The true positive rate (TPR) is the ratio between TP cases
and all cases that are identified as fuel-missing ones. The false positive rate
(FPR) is the ratio between FP cases over all cases that are identified as full-
assembly ones. The ROC curves show the relationship of noise intensity with the
accuracy of the reconstruction, that is, the higher the noise level (i.e., the lower
the SNR), the worse the ability to identify the correct location of the missing
fuel assembly. Therefore, to ensure the accuracy of the image reconstruction, we
need sufficiently high neutron fluence (which should ensure the canister being
actually irradiated by at least a total of 109 source neutrons), especially for
the mis-loaded scenarios with fuel assemblies located in the inner region of the
canister.

3.2.2. Results from CNN

The images reconstructed with FISTA tend to be noisy when the missing
assembly is located in the center part of the cask. Hence, we applied the CNN
model to improve the quality of the reconstructed images.

Fig. 14 shows the noisy reconstructed images from FISTA as the network
inputs and the corresponding CNN outputs. From the comparison between the
inputs and corresponding outputs, the SNR of the reconstructed images can be
improved by a factor of at least 1.5.

4. Discussion and Conclusions

We presented the results of a simulation-based study aimed at identifying
suitable operating parameters for the non-destructive inspection of SNF with
14.1 MeV interrogating neutrons. We simulated a D-T neutron generator with
a source strength of 1010 n/s, suitably collimated to minimize off-axis irradia-
tion that would otherwise increase the measurement background without adding
useful information. Fast neutrons emitted as a result of the interactions of the
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(a) Input A (SNR: 3.863). (b) Output A (SNR: 9.948).

(c) Input B (SNR: 1.666). (d) Output B (SNR: 2.693).

Figure 14: The CNN output for inner fuel assembly missing cases using the noisy reconstructed
images from FISTA as input. The colorbars are normalized to 1 based on the corresponding
ground truth where the intensity is set as 1 for the missing fuel assembly pixel.

primary beam with the SNF were detected and used as a signature to identify
missing fuel rods. We found that a direct angle-differential fast neutron mea-
surement is a viable approach to detect missing pins inside a fuel cask. Based
on the proposed method, one assembly with at least 75% pins (69 out of 92
fuel pins) removed can be identified. The detection of a single missing pin is
challenging with this method. Other time-correlated signatures could be con-
sidered in the future to improve the specificity of the NDA method to fissile
and fissionable material. For example, longer irradiation time would enable the
measurement of coincidence neutrons that are a specific signature of induced
fission. In general, a longer inspection time, corresponding to a neutron flu-
ence irradiating the cask ≥ 109, would yield a lower relative uncertainty of the
neutron counts, which could improve the overall NDA performances.

Most of the fast neutrons were produced by scattering reactions while fissions
accounted for less than 0.1% of all the interactions occurring within the cask.
These conditions allowed us to adopt an iterative linear imaging reconstruction
approach based on the accurate simulation of the system response to missing fuel
located throughout the cask. We hence reconstructed the bi-dimensional cross-
section of a SNF assembly by solving an inverse problem with FISTA. When
solving the inverse problem, the location of the missing fuel can be reconstructed
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by unfolding it from the neutron angular distribution and the knowledge of the
system response to missing bundles within the entire SNF cask field-of-view.
Images reconstructed using FISTA tend to be noisy when the missing fuel as-
sembly is located in inner region of the canister. We denoised the reconstructed
images and improved the SNR by applying a CNN-based model. By optimizing
the parameters of the CNN architecture, such as the number of layers, number
of convolutional filters, the filter size, the batch size, and the number of training
epochs, we were able to identify and locate one missing fuel assembly in the
center of the canister, hence improving the overall penetrability of the method,
with respect to the direct measurement of the back-scattered signature.

This method allowed us to accurately locate the position of a full missing
bundle with an overall measurement time less than 2 hours and a source strength
of at least 1010 n/s in the 4π solid angle, using organic scintillation detectors.

Using organic scintillation detectors to perform the tomographic inspection,
the measurement time of a single scan is approximately 8.5 min to achieve an
average relative uncertainty associated with the counts at the detectors less than
0.6%. Therefore, the measurement time for an inspection including 12 scans was
estimated to be 1.7 hours.

The simulated inspection time of less than two hours is much shorter when
compared to other proposed methods, which may require an inspection time
longer than 24 hours [6]. The estimated inspection time can be further reduced
using a stronger source and a closer source-to-canister distance. However, reduc-
ing the source-to-canister distance will require further collimation of the source
that might reduce the field-of-view of the source and the overall neutron flux
irradiating the assemblies.

The overall scope of this work was to study the feasibility of neutron imaging
of spent fuel through simulations. A realistic experimental verification of the
neutron tomographic imaging of the canister was not conducted on SNF casks.
We are currently validating our simulated model using a small-scale experiment
based on a P385 neutron generator.
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