Skip to main content
Log in

Sensor allocation in diverse environments

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Sensor coverage varies with location due to factors such as weather, terrain, and obstacles. If a field can be partitioned into zones of homogeneous sensing areas, then the area covered by a random deployment of sensors can be optimized by controlling the number of sensors deployed in each zone. This paper provides formulas to directly calculate the optimal sensor partition in runtime asymptotically equal to the number of zones; to determine the minimum sensor count required to achieve a specific coverage threshold; and to bound the maximum increase in coverage over a strategy oblivious to differences in sensing areas. Results show that this bound is no greater than 13% for a field with two zones. While the analytical solutions assume that each zone is covered independently, sensors are allowed to affect neighboring zones in simulations. Nevertheless, the simulation results support the optimality of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brass, P. (2007). Bounds on coverage and target detection capabilities for models of networks of mobile sensors. TOSN, 3(2).

  2. Brass, P., Moser, W. O. J., & Pach, J. (2005). Research problems in discrete geometry. Berlin: Springer.

    MATH  Google Scholar 

  3. Daescu, O., & Palmer, J. D. (2009). Minimum separation in weighted subdivisions. International Journal of Computational Geometry and Applications, 19(1), 33–57.

    Article  MathSciNet  MATH  Google Scholar 

  4. Dhillon, S. S., & Chakrabarty, K. (2003). Sensor placement for effective coverage and surveillance in distributed sensor networks. In WCNC (Vol. 3, pp. 1609–1614). doi:10.1109/WCNC.2003.1200627.

  5. Fanimokun, A., & Frolik, J. (2003). Effects of natural propagation environments on wireless sensor network coverage area. In Proceedings of the 35th Southeastern symposium on system theory, 2003 (pp. 16–20). doi:10.1109/SSST.2003.1194521.

  6. Hall, P. (1988). Introduction to the theory of coverage processes. New York: John Wiley and Sons

    MATH  Google Scholar 

  7. Khuller, S., Moss, A., & Naor, J. (1999). The budgeted maximum coverage problem. Information Processing Letters, 70(1), 39–45.

    Article  MathSciNet  MATH  Google Scholar 

  8. Koskinen, H. (2004). On the coverage of a random sensor network in a bounded domain. In Proceedings of 16th ITC specialist seminar (pp. 11–18).

  9. Lan, G. L., Ma, Z. M., & Sun, S. S. (2005). Coverage problem of wireless sensor networks. In J. Akiyama, W. Y. C. Chen, M. Kano, X. Li, & Q. Yu (Eds.), CJCDGCGT, Lecture notes in computer science (Vol. 4381, pp. 88–100). Berlin: Springer.

  10. Lazos, L., & Poovendran, R. (2006). Stochastic coverage in heterogeneous sensor networks. TOSN, 2(3), 325–358.

    Article  Google Scholar 

  11. Leoncini, M., Resta, G., & Santi, P. (2005). Analysis of a wireless sensor dropping problem in wide-area environmental monitoring. In Fourth international symposium on information processing in sensor networks, 2005 (IPSN 2005) (pp. 239–245). doi:10.1109/IPSN.2005.1440931.

  12. Liu, B., & Towsley, D. (2004). A study of the coverage of large-scale sensor networks. In IEEE international conference on mobile ad-hoc and sensor systems, 2004 (pp. 475–483). doi:10.1109/MAHSS.2004.1392188.

  13. Pompili, D., Melodia, T., & Akyildiz, I. F. (2009). Three-dimensional and two-dimensional deployment analysis for underwater acoustic sensor networks. Ad Hoc Networks, 7(4), 778–790.

    Article  Google Scholar 

  14. Shakkottai, S., Srikant, R., & Shroff, N. B. (2005). Unreliable sensor grids: Coverage, connectivity and diameter. Ad Hoc Networks, 3(6), 702–716.

    Article  Google Scholar 

  15. Shukla, S., Bulusu, N., & Jha, S. (2004). Cane-toad monitoring in kakadu national park using wireless sensor networks. In Proceedings of APAN.

  16. Sviridenko, M. (2004). A note on maximizing a submodular set function subject to a knapsack constraint. Operations Research Letters, 32(1), 41–43.

    Article  MathSciNet  MATH  Google Scholar 

  17. Verma, D. C., Wu, C. W., Brown, T., Bar-Noy, A., Shamoun, S., & Nixon, M. (2008). Location dependent heuristics for sensor coverage planning. In SPIE (p. 69810B). doi:10.1117/12.783458.

  18. Verma, D. C., Wu, C. W., Brown, T., Bar-Noy, A., Shamoun, S., & Nixon, M. (2009). Application of halftoning algorithms to location dependent sensor placement. In IEEE international symposium on circuits and systems, 2009 (ISCAS 2009) (pp. 161–164). doi:10.1109/ISCAS.2009.5117710.

  19. Wan, P. J., & Yi, C. W. (2006). Coverage by randomly deployed wireless sensor networks. IEEE Transactions on Information Theory, 52(6), 2658–2669.

    Article  MathSciNet  Google Scholar 

  20. Xing, G., Tan, R., Liu, B., Wang, J., Jia, X., & Yi, C. W. (2009). Data fusion improves the coverage of wireless sensor networks. In Proceedings of the 15th annual international conference on mobile computing and networking (MobiCom '09), ACM, New York, NY (pp. 157–168). doi:10.1145/1614320.1614338.

  21. Yang, Y., Hou, I. H., Hou, J. C., Shankar, M., & Rao, N. S. V. (2009). Sensor placement for detecting propagative sources in populated environments. In INFOCOM IEEE (pp. 1206–1214). doi:10.1109/INFCOM.2009.5062034.

  22. Zou, Y., & Chakrabarty, K. (2004). Uncertainty-aware and coverage-oriented deployment for sensor networks. Journal of Parallel and Distributed Computing, 64(7), 788–798.

    Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored by US Army Research laboratory and the UK Ministry of Defence and was accomplished under Agreement Number W911NF-06-3-0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the US Army Research Laboratory, the US Government, the UK Ministry of Defence, or the UK Government. The US and UK Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Shamoun.

Appendices

Appendix 1: Proof of Proposition 5.1

This is evident when i = 1 by setting C 1 = 1 and \(\alpha_1^{\prime}=\alpha_1\). For i ≥ 2 zones, begin with the assumption that the optimal coverage of \(Z_{i-1}^{\prime}\) by n sensors is equivalent to Eq. 15, such that the expected coverage under a partition \(\beta_i^{\prime}\) is formulated as

$$ \sum_{j=1}^{i-1} \gamma_j \left( 1 - C_{i-1} e^{-\frac{\alpha_{i-1}^{\prime} S}{\sum_{j=1}^{i-1} \gamma_j A} (1 - \beta_i^{\prime}) n} \right) + \gamma_i \left(1 - e^{-\frac{\alpha_i S}{\gamma_i A} \beta_i^{\prime} n} \right) $$
(25)

Taking the second derivative of Eq. 25 with respect to \(\beta_i^{\prime}\) shows that it is concave. Therefore, there is one maximum for any value of \(\beta_i^{\prime}\). A sketch of the derivation of the optimal value of \(\beta_i^{\prime}\) is as follows. Set the first derivative of Eq. 25 with respect to \(\beta_i^{\prime}\) equal to 0 and solve for \(\beta_i^{\prime}\).

$$ \beta_i^{\prime} = \frac{\alpha_{i-1}^{\prime} \gamma_i}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j} \left( \frac{\sum_{j=1}^{i-1} \gamma_j A}{\alpha_{i-1}^{\prime} S n} \ln \frac{\alpha_i}{\alpha_{i-1}^{\prime} C_{i-1}} + 1 \right) $$
(26)

Substitute this expression into Eq. 25 and reduce to derive an expression for coverage equivalent to Eq. 15

$$ \sum_{j=1}^{i} \gamma_j \left( 1 - \frac{\sum_{j=1}^{i-1} \gamma_j \alpha_i + \alpha_{i-1}^{\prime} \gamma_i}{\sum_{j=1}^{i} \gamma_j \alpha_{i-1}^{\prime}} \cdot \left( \frac{\alpha_{i-1}^{\prime} C_{i-1}}{\alpha_i} \right)^{\frac{\alpha_i \sum_{j=1}^{i-1} \gamma_j}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j}} e^{-\frac{\alpha_i \alpha_{i-1}^{\prime} \sum_{j=1}^{i} \gamma_j}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j} \frac{S n}{\sum_{j=1}^{i} \gamma_j A}} \right) $$
(27)

in which \(\alpha_i^{\prime}\) and C i are defined recursively as follows:

$$ \begin{aligned} \alpha_1^{\prime} & = 1 \\ \alpha_{i \ge 2}^{\prime} & = \frac{\alpha_i \alpha_{i-1}^{\prime} \sum_{j=1}^{i} \gamma_j}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j} \\ C_1 & = 1\\ C_{i \ge 2} & = \frac{\sum_{j=1}^{i-1} \gamma_j \alpha_i + \alpha_{i-1}^{\prime} \gamma_i}{\sum_{j=1}^{i} \gamma_j \alpha_{i-1}^{\prime}} \left( \frac{\alpha_{i-1}^{\prime} C_{i-1}}{\alpha_i} \right)^{\frac{\alpha_i \sum_{j=1}^{i-1} \gamma_j}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j}} \end{aligned} $$

The derivation of Eqs. 26 and 27 can be found in "Appendix 2". \(\square\)

Appendix 2: Derivations

1.1 β opt , Eq. 6 in Sect. 4

Take the derivative of Eq. 5 with respect to β, set the derivative equal to zero, rearrange terms, and eliminate like terms:

$$ \alpha_2 e^{-\frac{\alpha_2 S}{\gamma_2 A} \beta n} = \alpha_1 e^{-\frac{\alpha_1 S}{\gamma_1 A} (1 - \beta) n} $$

Take the log of both sides of the equation and solve for β:

$$ \begin{aligned} \frac{S n}{A} \left( \frac{\alpha_1}{\gamma_1} + \frac{\alpha_2}{\gamma_2} \right) \beta & = \ln \frac{\alpha_2}{\alpha_1} + \frac{\alpha_1 S}{\gamma_1 A} n \\ \frac{\gamma_1 \gamma_2}{\alpha_1 \alpha_2} \frac{S n}{A} \left( \frac{\alpha_1}{\gamma_1} + \frac{\alpha_2}{\gamma_2} \right) \beta & = \frac{\gamma_1 \gamma_2}{\alpha_1 \alpha_2} \left( \ln \frac{\alpha_2}{\alpha_1} + \frac{\alpha_1 S}{\gamma_1 A} n \right)\\ \frac{S n}{A} \left( \frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2} \right) \beta & = \frac{\gamma_2}{\alpha_2} \left( \frac{\gamma_1}{\alpha_1} \ln \frac{\alpha_2}{\alpha_1} + \frac{S}{A} n \right) \\ \beta & = \frac{1}{\frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2}} \frac{\gamma_2}{\alpha_2} \left( \frac{A}{S n} \frac{\gamma_1}{\alpha_1} \ln \frac{\alpha_2}{\alpha_1} + 1 \right) \\ \end{aligned} $$

Note that α1 = 1 by definition, so \(\ln \frac{\alpha_2}{\alpha_1}=\ln \alpha_2\).

1.2 Two zone optimal coverage, Eq. 8 in Sect. 4

When \(n \le -\frac{A}{S} \frac{\gamma_1}{\alpha_1} \ln \alpha_2, \) all sensors are assigned to Z 1, so the expected coverage is:

$$ \gamma_1 \left(1 - e^{-\frac{\alpha_1 S}{\gamma_1 A} n} \right) $$

To derive an expression for the coverage when \(n > -\frac{A}{S} \frac{\gamma_1}{\alpha_1} \ln \alpha_2, \) substitute β opt into Eq. 5 and simplify

$$ \begin{aligned} & \quad 1 - \gamma_1 e^{-\frac{\alpha_1 S}{\gamma_1 A} \left(1 - \frac{1}{\frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2}} \, \frac{\gamma_2}{\alpha_2} \,\left( \frac{A}{S n} \frac{\gamma_1}{\alpha_1} \ln \alpha_2 + 1 \right) \right) n} \\ & \qquad - \gamma_2 e^{-\frac{\alpha_2 S}{\gamma_2 A} \, \frac{1}{\frac{\gamma_1}{\alpha_1} + \,\frac{\gamma_2}{\alpha_2}} \, \frac{\gamma_2}{\alpha_2} \left( \frac{A}{S n}\, \frac{\gamma_1}{\alpha_1}\, \ln \alpha_2 + 1 \right) n} \\ & = 1 - \left( \gamma_1 e^{\left( -\frac{\alpha_1}{\gamma_1} \left( \frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2} \right) + 1 + \frac{\alpha_1}{\gamma_1} \,\frac{\gamma_2}{\alpha_2} \right) \frac{1}{\frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2}}\, \frac{S n}{A}} e^{\frac{1}{\frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2}} \left( \frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2} \right) \ln \alpha_2} \right. \\ & \qquad \left. + \gamma_2 \right) e^{-\frac{1}{\frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2}}\, \frac{\gamma_1}{\alpha_1} \ln \alpha_2} e^{-\frac{1}{\frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2}} \, \frac{S n}{A}} \\ & = 1 - \left( \gamma_1 \alpha_2 + \gamma_2 \right) \alpha_2^{-\frac{1}{\frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2}} \,\frac{\gamma_1}{\alpha_1}} e^{-\frac{1}{\frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2}}\, \frac{S n}{A}} \\ & = 1 - \left( \frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2} \right) \left( \alpha_2^\frac{\gamma_2}{\alpha_2} \right)^{\frac{1}{\frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2}}} e^{\frac{1}{\frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2}} \,\frac{S n}{A}} \\ \end{aligned} $$

1.3 Two zone minimum sensor count, Eq. 7 in Sect. 4

Just as the formula for C is conditional on whether \(n \le -\frac{A}{S} \frac{\gamma_1}{\alpha_1} \ln \alpha_2\) or not, the formula for the minimum number of sensors n to achieve an expected level of coverage C depends on whether or not C is less than or equal to the expected coverage when \(n = -\frac{A}{S} \frac{\gamma_1}{\alpha_1} \ln \alpha_2\). The expected coverage for this value of n is:

$$ \gamma_1 \left(1 - e^{\frac{\alpha_1S}{\gamma_1 A}\, \frac{A}{S} \frac{\gamma_1}{\alpha_1} \ln \alpha_2}\right) = \gamma_1 (1 - \alpha_2) $$

To derive a formula for n when \(C = \gamma_1 \left(1 - e^{-\frac{\alpha_1 S}{\gamma_1 A} n} \right),\) rearrange the terms, take the log of both sides and solve for n:

$$ n = -\frac{\gamma_1 A}{\alpha_1 S} \ln \frac{\gamma_1 - C}{\gamma_1} $$

To derive a formula for n when \(C = 1 - \left( \frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2} \right) \left( \alpha_2^\frac{\gamma_2}{\alpha_2} \right)^{\frac{1}{\frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2}}} e^{\frac{1}{\frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2}}\, \frac{S n}{A}}\) rearrange the terms, take the log of both sides and solve for n:

$$ n = \frac{A}{S} \left( \frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2} \right) \left( \ln (1 - C) - \ln \left( \frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2} \right) - \frac{1}{\frac{\gamma_1}{\alpha_1} + \frac{\gamma_2}{\alpha_2}} \frac{\gamma_2}{\alpha_2} \ln \alpha_2 \right) $$

1.4 \(\beta_{opt_i}^{\prime},\) Eq. 18 in Sect. 5

Take the derivative of Eq. 25 from "Appendix 1" with respect to \(\beta_{opt_i}^{\prime}, \) set it equal to 0, rearrange the terms, and eliminate like terms:

$$ \alpha_i e^{-\frac{\alpha_i S}{\gamma_i A} \beta_i^{\prime} n} = \alpha_{i-1}^{\prime} C_{i-1} e^{-\frac{\alpha_{i-1}^{\prime} S}{\sum_{j=1}^{i-1} \gamma_j A} (1 - \beta_i^{\prime}) n} $$

Take the log of both sides and solve for \(\beta_i^{\prime}\)

$$ \begin{aligned} \frac{\alpha_{i-1}^{\prime} S}{\sum_{j=1}^{i-1} \gamma_j A} \beta_i^{\prime} n + \frac{\alpha_i S}{\gamma_i A} \beta_i^{\prime} n &= \ln \alpha_i - \ln (\alpha_{i-1}^{\prime} C_{i-1}) + \frac{\alpha_{i-1}^{\prime} S}{\sum_{j=1}^{i-1} \gamma_j A} n\\ \frac{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j}{\gamma_i \sum_{j=1}^{i-1} \gamma_j} \frac{S n}{A} \beta_i^{\prime} &= \frac{\alpha_{i-1}^{\prime} S n}{\sum_{j=1}^{i-1} \gamma_j A} \left( \frac{\sum_{j=1}^{i-1} \gamma_j A}{\alpha_{i-1}^{\prime} S n} \ln \frac{\alpha_i}{\alpha_{i-1}^{\prime} C_{i-1}} + 1 \right)\\ \beta_i^{\prime} &= \frac{\alpha_{i-1}^{\prime} \gamma_i}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j} \left( \frac{\sum_{j=1}^{i-1} \gamma_j A}{\alpha_{i-1}^{\prime} S n} \ln \frac{\alpha_i}{\alpha_{i-1}^{\prime} C_{i-1}} + 1 \right) \end{aligned} $$

To solve for C i and \(\alpha_i^{\prime},\) first expand \((1 - \beta_i^{\prime})\):

$$ \begin{aligned} & {{\frac{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j}} - {\frac{\alpha_{i-1}^{\prime} \gamma_i}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j}}\, {\frac{\sum_{j=1}^{i-1} \gamma_jA}{\alpha_{i-1}^{\prime}Sn}} \ln {\frac{\alpha_i}{\alpha_{i-1}^{\prime} C_{i-1}}}} \\ & {\qquad - \frac{\alpha_{i-1}^{\prime} \gamma_i}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j}} \\ & {= {\frac{\alpha_i \sum_{j=1}^{i-1} \gamma_j}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j}} - {\frac{\alpha_{i-1}^{\prime} \gamma_i}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j}}\, {\frac{\sum_{j=1}^{i-1} \gamma_j A}{\alpha_{i-1}^{\prime}Sn}} \ln {\frac{\alpha_i}{\alpha_{i-1}^{\prime} C_{i-1}}}} \end{aligned} $$

Now substitute \(1 - \beta_i^{\prime}\) and \(\beta_i^{\prime}\) into Eq. 25 and reduce.

$$ \begin{aligned} & \quad \sum_{j=1}^{i} \gamma_j - \sum_{j=1}^{i-1} \gamma_j C_{i-1} e^{-\frac{\alpha_i \alpha_{i-1}^{\prime} S n}{A \left(\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j\right)}} e^{\frac{\alpha_{i-1}^{\prime} \gamma_i}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j} \ln \frac{\alpha_i}{\alpha_{i-1}^{\prime} C_{i-1}}} \\ & - \gamma_i e^{-\frac{\alpha_i \sum_{j=1}^{i-1} \gamma_j}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j} \ln \frac{\alpha_i}{\alpha_{i-1}^{\prime} C_{i-1}}} e^{-\frac{S n}{A}\, \frac{\alpha_i \alpha_{i-1}^{\prime}}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j}} \\ & = \sum_{j=1}^{i} \gamma_j - \left( \sum_{j=1}^{i-1} \gamma_j C_{i-1} \frac{\alpha_i}{\alpha_{i-1}^{\prime} C_{i-1}} + \gamma_i \right) \\ & \qquad \cdot \left( \frac{\alpha_{i-1}^{\prime} C_{i-1}}{\alpha_i} \right)^{\frac{\alpha_i \sum_{j=1}^{i-1} \gamma_j}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j}} e^{-\frac{\alpha_i \alpha_{i-1}^{\prime} \sum_{j=1}^{i} \gamma_j}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j}\, \frac{S n}{\sum_{j=1}^{i} \gamma_j A}} \\ & = \sum_{j=1}^{i} \gamma_j \left( 1 - \frac{\sum_{j=1}^{i-1} \gamma_j \alpha_i + \alpha_{i-1}^{\prime} \gamma_i}{\sum_{j=1}^{i} \gamma_j \alpha_{i-1}^{\prime}} \right. \\ & \qquad \left. \cdot \left( \frac{\alpha_{i-1}^{\prime} C_{i-1}}{\alpha_i} \right)^{\frac{\alpha_i \sum_{j=1}^{i-1} \gamma_j}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j}} e^{-\frac{\alpha_i \alpha_{i-1}^{\prime} \sum_{j=1}^{i} \gamma_j}{\alpha_{i-1}^{\prime} \gamma_i + \alpha_i \sum_{j=1}^{i-1} \gamma_j} \,\frac{S n}{\sum_{j=1}^{i} \gamma_j A}} \right) \end{aligned} $$

Recursive expressions for α i and C i can be found in "Appendix 1". Proofs by induction establish that Eqs. 16 and 17 are closed form expressions for α i and C i , respectively, which can be substituted in the expression above for \(\beta_i^{\prime}\) to yield Eq. 18.

1.5 \(\beta_{opt_i}, \) Eq. 19 in Sect. 5

This is derived using the method of Lagrange multipliers. A sketch of the derivation is as follows. Set the Lagrange function to

$$ 1 - \sum_{i=1}^k \gamma_i e^{-\frac{\alpha_i S}{\gamma_i A} \beta_i n} - \lambda \left(\sum_{i=1}^k \beta_i - 1\right) $$
(28)

Set the partial derivative with respect to each β i equal to 0 and solve for each β i , such that, for all 1 ≤ i ≤ k,

$$ \beta_i = - \frac{\gamma_i A}{\alpha_i S n} \left( \ln \frac{\lambda A}{S n} - \ln \alpha_i \right) $$
(29)

Take the partial derivative of the Lagrangian with respect to λ and set it equal to 0, substitute Eq. 29 for each β i , and solve for \(\ln \frac{\lambda A}{S n}. \)

$$ \ln \frac{\lambda A}{S n} = - \frac{1}{\sum_{j=1}^k \frac{\gamma_j}{\alpha_j}} \left( \frac{S n}{A} - \sum_{j=1}^{k} \frac{\gamma_j}{\alpha_j} \ln \alpha_j \right) $$
(30)

Substitute this back into Eq. 29 and simplify to get Eq. 19. Note that k should be set as large as possible such that β i  > 0, for all 1 ≤ i ≤ k.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bar-Noy, A., Brown, T. & Shamoun, S. Sensor allocation in diverse environments. Wireless Netw 18, 697–711 (2012). https://doi.org/10.1007/s11276-012-0428-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-012-0428-1

Keywords

Navigation