Skip to main content
Log in

Cross-layer analysis of protocol delay in mobile devices receiving BCMCS

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Broadcast and multicast services allow the high-speed delivery of multimedia content to multiple subscribers over CDMA2000 wireless networks. This relies on a high-rate broadcast packet data system with an air interface governed by two interacting protocols: the medium access control (MAC) protocol specifies the methods of multiplexing and of forward error correction used to reduce the radio link error-rate seen by the higher layers; and the security protocol specifies the procedures used to encrypt and decrypt content, following the Advanced Encryption Standard. We investigated the mutual effect of these protocols, in the context of an ARM9-based mobile platform, and their influence on delay. This allowed us to propose a novel analytic model that can predict the total delay by summing the separate but related delays incurred by implementations of the MAC and security protocols with particular parameters. This cross-layer model includes the characteristics of error control in the MAC layer and the varying condition of the fading channel in the physical layer. We can use this model to estimate the size of data buffers that mobiles require to provide a seamless multimedia service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Short-term key in BCMCS.

  2. We will assume that SK is renewed every time an ECB is received.

  3. Each sub-block is a group of 125 RS codewords and contains N security packets, as can be seen from Fig. 2.

References

  1. Wang, J., Sinnarajaj, R., Chen, T., Wei, Y., & Tiedemann, E. (2004). Broadcast and multicast services in CDMA2000. IEEE Communications Magazine 42(2), 76–82.

    Article  Google Scholar 

  2. Kang, K., Cho, Y., Cho, J., & Shin, H. (2007). Scheduling scalable multimedia streams for 3G cellular broadcast and multicast services. IEEE Transactions on Vehicular Technology 56(5), 2655–2672.

    Article  Google Scholar 

  3. Broadcast-Multicast Service Security Framework (2003). 3GPP2 Std. S.R0083 Rev. 1.0.

  4. Enhanced Cryptographic Algorithms (2005) 3GPP2 Std. S.S0055 Rev. 2.0.

  5. Daemen, J., & Rijmen, V. (2002). The design of Rijndael: AES—the advanced encryption standard. Berlin: Springer .

    Book  Google Scholar 

  6. Daemen, J., & Rijmen, V. (2000). The block cipher Rijndael, lecture notes in computer science 1820, 277–284.

  7. Agashe, P., Rezaiifar, R., & Bender, P. (2004). CDMA2000 high rate broadcast packet data air interface design. IEEE Communication Magazine 42(2), 83–89.

    Article  Google Scholar 

  8. Blahut, R. E. (1983). Theory and practice of error control codes. Boston: Addison-Wesley.

    MATH  Google Scholar 

  9. Chen, T., Wei, Y., Tiedemann, E. G., Sinnarajah, R., & Wang, J. (2002). A high-rate broadcast channel design for CDMA2000. In Proceedings of IEEE GLOBECOM 1, 605–609.

  10. Benedetto, S., & Montorsi, G. (1996). Unveiling turbo-codes: Some results on parallel concatenated coding schemes. IEEE Transactions on Information Theory 42(2):409–429.

    Article  MATH  Google Scholar 

  11. Zorzi, M., Rao, R. R., & Milstein, L. B. (1997). ARQ error control on fading mobile radio channels. IEEE Transactions on Vehicular Technology 46(2), 445–455.

    Article  Google Scholar 

  12. Zorzi, M., Rao, R. R., & Milstein, L. B. (1998). Error statistics in data transmission over fading channels. IEEE Transactions on Communications 46(11), 1468–1477.

    Article  Google Scholar 

  13. Parkvall, S., Englund, E., Lundevall, M., & Torsner, J. (2006). Evolving 3G mobile systems: Broadband and broadcast services in WCDMA. IEEE Communication Magazine 44(2), 30–36.

    Article  Google Scholar 

  14. Hartung, F., Horn, U., Huschke, J., Kampmann, M., Lohmar, T., & Lundevall, M. (2007). Delivery of broadcast services in 3G networks. IEEE Transactions on Broadcasting 53(1), 188–199.

    Article  Google Scholar 

  15. Correia, A. M. C., Silva, J. C. M., Souto, N. M. B., Silva, A. C. L., Boal, A. B., & Soares, A. B. (2007). Multi-resolution broadcast/multicast systems for MBMS. IEEE Transactions on Broadcasting 53(1) 224–234.

    Article  Google Scholar 

  16. Luby, M., Gasiba, T., Stockhammer, T., & Watson, M. (2007). Reliable multimedia download delivery in cellular broadcast networks. IEEE Transactions on Broadcasting 53(1), 235–246.

    Article  Google Scholar 

  17. Provvedi, L., Rattray, C., Hofmann, J., & Parolari, S. (2004). Provision of MBMS over the GERAN: Technical solutions and performance. In Proceedings of IEE international conference on 3G mobile communication technologies, pp. 494–498.

  18. Jenkac, H., Liebl, G., Stockhammer, T., & Xu, W. (2004) Flexible outer Reed–Solomon coding on RLC layer for MBMS over GERAN. In Proceedings of IEEE vehicular technology conference 5, pp. 2777–2781.

  19. Atici, C., & Sunay, M. O. (2007). High data-rate video broadcasting over 3G wireless systems. IEEE Transactions on Broadcasting 53(1), 212–223.

    Article  Google Scholar 

  20. Kang, K., Kim, C., Noh, D. K. & Ryu, J. (2008). Modeling the execution time of Reed-Solomon decoding on an ARM9-based mobile platform. In Proceedings of ICCCN.

  21. Kang, K., & Noh, D. K. (2009). Stochastic timing analysis of the AES cipher algorithm over a correlated fading channel. In Proceedings of ICCCN.

  22. Kang, K., Kim, C., & Park, K. (2010). A hybrid architecture for delay analysis of interleaved FEC on mobile platforms. IEEE Transactions on Vehicular Technology 59(4), 2087–2092.

    Article  Google Scholar 

  23. Zhang, X., & Parhi, K. K. (2002). Implementation approaches for the advanced encryption standard algorithm. IEEE Circuits and Systems Magazine 2(4), 24–46.

    Article  Google Scholar 

  24. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., & Piuri, V. (2003). Error analysis and detection procedures for a hardware implementation of the advanced encryption standard. IEEE Transactions on Computers 52(4), 492–505.

    Article  Google Scholar 

  25. Bertoni, G., Breveglieri, L., Fragneto, P., Macchetti, M., & Marchesin, S. (2002). Efficient software implementation of AES on 32-bit olatforms, Lecture Notes in Computer Science 2523, 159–171.

  26. Code for AES, http://www.gladman.me.uk.

  27. IAR Embedded Workbench for ARM, http://www.iar.com.

  28. Proakis, J. G., & Salehi, M. (2008). Digital communications. New York: McGraw-Hill.

    Google Scholar 

  29. Jakes, W. C. (1994). Microwave mobile communications. Hoboken, NJ: Wiley-IEEE Press.

    Book  Google Scholar 

  30. Parry, R. (2002). CDMA2000 1xEV-DO. IEEE Potentials, 21(4):10–13

    Article  Google Scholar 

  31. Coded Modulation Library, http://www.iterativesolutions.com.

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A1001835).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbeom Hur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, K., Park, J. & Hur, J. Cross-layer analysis of protocol delay in mobile devices receiving BCMCS. Wireless Netw 19, 1497–1509 (2013). https://doi.org/10.1007/s11276-012-0489-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-012-0489-1

Keywords

Navigation