Skip to main content
Log in

A control-period-based distributed adaptive guard channel reservation scheme for cellular networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper a new control-period-based distributed adaptive guard channel reservation (CDAGCR) technique is proposed to meet the call admission level quality-of-service (QoS) in wireless cellular networks. It partitions the real time into control periods. Handoffs during the current control period is used to reserve guard channels at the beginning of the next control period. Efficient mechanisms are devised to adaptively vary the length of the control period which further regulates the number of guard channels used to meet the call admission level QoS. The BSC associated with the cell site can do this exclusively without generating any signal overhead for information exchange among cell sites unlike the schemes described in [14]. Thus, the CDAGCR scheme is amenable to a fully distributed implementation. Extensive simulation studies have been carried out with an emulated test bed to investigate the performance of this CDAGCR scheme. It is found that this CDAGCR scheme keeps the handoff call drop probability below the targeted QoS with comparable new call blocking by adaptively varying the length of the control period. The simulation results appear promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Levine, D. A., Akyildiz, I. F., & Naghshineh, M. (1997). A resource estimation and call admission algorithm for wireless multimedia networks using the shadow cluster concept. IEEE/ACM Transactions on Networking, 5, 1–12.

    Article  Google Scholar 

  2. Oliveira, C., Kim, J. B., & Suda, T. (1998). An adaptive bandwidth reservation scheme for high-speed multimedia wireless networks. IEEE JSAC, 16, 858–874.

    Google Scholar 

  3. Choi, S., & Shin, K. G. (2000). A comparative study of bandwidth reservation and admission control schemes in QoS-sensitive cellular networks. Wireless Networks, 6, 289–305.

    Article  MATH  Google Scholar 

  4. Choi, S., & Shin, K. G. (2002). Adaptive bandwidth reservation and admission control in QoS-sensitive cellular networks. IEEE Transactions on Parallel and Distributed Systems, 13, 882–897.

    Article  Google Scholar 

  5. Pati, H. K., Mall, R., & Sengupta, I. (2002). An efficient bandwidth reservation and call admission control scheme for wireless mobile networks. Elseviers’ Computer Communications, 25(1), 74–83.

    Article  Google Scholar 

  6. Chiu, M-H., & Bassiouni, M. A. (2000). Predictive schemes for handoff prioritization in cellular networks based on mobile positioning. IEEE JSAC, 18, 510–522.

    Google Scholar 

  7. Choi, S., & Shin, K. G. (1998) Predictive and adaptive bandwidth reservation for hand-offs in QoS-sensitive cellular networks. ACM SIGCOMM’98, 155–166.

  8. Katzela, I., & Naghshineh, M. (1996). Channel assignment schemes for cellular mobile telecommunication systems: A comprehensive survey. IEEE Personal Communications, 3, 10–31.

    Article  Google Scholar 

  9. Naghshineh, M., & Schwartz, M. (1996) Distributed call admission control in mobile/wireless networks. IEEE JSAC, 14(4), 711–717.

    Google Scholar 

  10. Talukdar, A. K., Badrinath, B. R., & Acharya, A. (1999). Integrated services packet networks with mobile hosts: Architecture and performance. Wireless Networks, 5, 111–124.

    Article  Google Scholar 

  11. Talukdar, A. K., Badrinath, B. R., & Acharya, A. (2001). MRSVP: A resource reservation protocol for an integrated services network with mobile hosts. Wireless Networks, 7, 5–19.

    Article  MATH  Google Scholar 

  12. Boumerdassi, S., & Beylot, A. (1999). Adaptive channel allocation for wireless PCN. Mobile Networks and Applications, 4, 111–116.

    Article  Google Scholar 

  13. Tekinay, S., & Jabbari, B. (1991). Handover and channel assignment in mobile cellular networks. IEEE Communications Magazine, 29, 42–46.

    Google Scholar 

  14. Lin, Y-B., Noerpel, A., & Harasty, D. (1994). A non-blocking channel assignment strategy for hand-offs. IEEE ICUPC, 558–562.

  15. Cox, D., & Reudink, D. (1973). Increasing channel occupancy in large-scale mobile radio systems: Dynamic channel reassignment. IEEE Transactions on Communications, 21(11), 1302–1306.

    Article  Google Scholar 

  16. Everitt, D., & Manfield, D. (1989). Performance analysis of cellular mobile communication systems with dynamic channel assignment. IEEE JSAC, 7, 1172–1180.

    Google Scholar 

  17. Falciasecca, G., Frullone, M., Riva, G., Sentinelli, M., & Serra, A. M. (1988). Investigation on a dynamic channel allocation for high capacity mobile radio systems. IEEE VTC, 176–181.

  18. Hong, D., & Rappaport, S. S. (1986). Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures. IEEE Transactions on VT, VT-35, 77–92.

    Google Scholar 

  19. Oh, S-H., & Tcha, D-W. (1992). Prioritized channel assignment in a cellular radio network. IEEE Transactions on Communications, 40, 1259–1269.

    Article  MATH  Google Scholar 

  20. Guérin, R. A. (1988). Queueing-blocking system with two arrival streams and guard channels. IEEE Transactions on Communications, 36, 153–163.

    Article  MATH  Google Scholar 

  21. Yoon, C. H., & Un, C. K. (1993). Performance of personal portable radio telephone systems with and without guard channels. IEEE JSAC, 11, 911–917.

    Google Scholar 

  22. Lin, Y-B., Mohan, S., & Noerpel, A. (1994). PCS channel assignment strategies for handoff and initial access. 3rd Quarter of IEEE Personal Communications, 47–56.

  23. Kulavaratharasah, M. D., & Aghvami, A. H. (1999). Teletraffic performance evaluation of microcellular personal communication networks (PCN’s) with prioritized handoff procedures. IEEE Transactions on VT, 48, 137–152.

    Google Scholar 

  24. Fantacci, R. (2000). Performance evaluation of prioritized handoff schemes in mobile cellular networks. IEEE Transactions on VT, 49, 485–493

    Google Scholar 

  25. Samanta, R. K., Bhattacharjee, P., & Sanyal, G. (2009). Performance analysis of cellular wireless network by queuing priority handoff calls. International Journal of Electrical and Electronics Engineering 3,(8) 472–477.

    Google Scholar 

  26. Tekinay, S., & Jabbari, B. (1992). A measurement-based prioritization scheme for handovers in mobile cellular networks. IEEE JSAC, 10, 1343–1350.

    Google Scholar 

  27. Ramjee, R., Towsley, D., & Nagarajan, R. (1997). On optimal call admission control in cellular networks. Wireless Networks, 3, 29–41.

    Article  Google Scholar 

  28. Bartolini, N. (2001). Handoff and optimal channel assignment in wireless networks. Mobile Networks and Applications, 6, 511–524.

    Article  MATH  Google Scholar 

  29. Panoutsopoulos, I. C., Kotsopoulos, S., & Tountopoulos, V. (2002). Handover and new call admission policy optimization for G3G systems. Wireless Networks, 8, 381–389.

    Article  MATH  Google Scholar 

  30. Ho, C-J., & Lea, C-T. (1999). Improving call admission policies in wireless networks. Wireless Networks 5, 257–265.

    Article  Google Scholar 

  31. Peha, J. M., & Stutivong, A. (2001). Admission control algorithms for cellular systems. Wireless Networks, 7, 117–125.

    Article  MATH  Google Scholar 

  32. Yang, W-B., & Geraniotis, E. (1994). Admission policies for integrated voice and data traffic in CDMA packet radio networks. IEEE JSAC, 12(4), 654–664.

    Google Scholar 

  33. Naghshineh, M., & Acampora, A. S. (1995). QoS provisioning in micro-cellular networks supporting multimedia traffic. IEEE INFOCOM’95, 3, 1075–1084.

    Google Scholar 

  34. Tajima, J., & Imamura, K. (1988) A strategy for flexible channel assignment in mobile communication systems. IEEE Transactions on VT, 37(2), 92–103.

    Google Scholar 

  35. Jiang, S., Li, B., Luo, X., & Tsang, D. H. K. (2001). A modified distributed call admission control scheme and its performance. Wireless Networks, 7, 127–138.

    Article  MATH  Google Scholar 

  36. Tian, X., & Ji, C. (2001). Bounding the performance of dynamic channel allocation with QoS provisioning for distributed admission control in wireless networks. IEEE Transactions on VT, 50, 388–397.

    Google Scholar 

  37. Li, B., Yin, L., Wong, K. Y. M., & Wu, S. (2001). An efficient and adaptive bandwidth allocation scheme for mobile wireless networks using an on-line local estimation technique. Wireless Networks, 7, 107–116.

    Article  MATH  Google Scholar 

  38. Wu, S., Wong, K. Y. M., & Li, B. (2002). A dynamic call admission policy with precision QoS guarantee using stochastic control for mobile wireless networks. IEEE Transactions on Networking, 10, 257–271.

    Article  Google Scholar 

  39. Ramanathan, P., Sivalingam, K. M., Agrawal, P., & Kishore, S. (1999). Dynamic resource allocation schemes during handoff for mobile multimedia wireless networks. IEEE JSAC, 17, 1270–1283.

    Google Scholar 

  40. Mišić, J., Chanson, S. T., & Lai, F. S. (1999). Admission control for multimedia networks with hard call level quality of service bounds. Elseviers Computer Networks, 31, 125–140.

    Article  Google Scholar 

  41. Zhuang, W., Bensaou, B., & Chau, K. C. (2000). Adaptive quality of service handoff priority scheme for mobile multimedia networks. IEEE Transactions on VT, 49, 494–505.

    Google Scholar 

  42. Mišić, J., & Bun, T. Y. (2000). Adaptive admission control in wireless multimedia networks under nonuniform traffic conditions. IEEE JSAC, 18, 2429–2442.

    Google Scholar 

  43. Aljadhai, A. R., & Znati, T. F. (2001). Predictive mobility support for QoS provisioning in mobile wireless environments. IEEE JSAC, 19, 1915–1930.

    Google Scholar 

  44. Wang, J-L., & Chiang, S-Y. (2004). Adaptive channel assignment scheme for wireless networks. Computers and Electrical Engineering, 30, 417–426.

    MATH  Google Scholar 

  45. Beigy, H., & Meybodi, M. R. (2009). Adaptive limited fractional guard channel algorithms: A learning automata approach. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 17, 881–913.

    Article  Google Scholar 

  46. Beigy, H., & Meybodi, M. R. (2011). Learning automata based dynamic guard channel algorithms. Computers and Electrical Engineering, 37, 601–613.

    Article  MATH  Google Scholar 

  47. Zeng, H., & Chlamtac, I. (2003). Adaptive guard channel allocation and blocking probability estimation in PCS networks. Computer Networks, 43, 163–176.

    Article  MATH  Google Scholar 

  48. Boumerdassi, S. (2000). An efficient reservation-based dynamic channel assignment strategy. 1st International conference on 3G mobile communication technologies, London, UK, pp. 352–355.

  49. Jiang Y., & Bhargava, V. K. (1997). Mobility-oriented guard channel assignment for personal communication systems. IEEE ICPWC, 15–18.

  50. Nelakuditi, S., Harinath, R. R., Rayadurgam, S., & Zhang, Z-L. (1999). Revenue-based call admission control for wireless cellular networks. IEEE ICPWC, 486–490.

  51. Ortigoza-Guerrero, L., & Aghvami, A. H. (1999). A prioritized handoff dynamic channel allocation strategy for PCS. IEEE Transactions on VT, 48, 1203–1215.

    Google Scholar 

  52. Ruggieri, M., Gaincristofaro, D., Graziosi, F., & Santucci, F. (1995). An optimizable guard-channel-based handover procedure for mobile microcellular systems. IEEE PIMRC’95, 3, 1357–1361.

    Google Scholar 

  53. Pati, H. K. (2007). A distributed adaptive guard channel reservation scheme for cellular networks. Wileys’ International Journal of Communication Systems, 20, 1037–1058.

    Article  Google Scholar 

  54. Fang, Y., Chlamtac, I., & Lin, Y-B. (1998). Channel occupancy times and handoff rate for mobile computing and PCS networks. IEEE Transactions on Computers, 47, 679–692.

    Article  Google Scholar 

  55. Guérin, R. A. (1987). Channel occupancy time distribution in a cellular radio system. IEEE Transactions on VT, VT-35, 89–99.

    Google Scholar 

Download references

Acknowledgments

The author is grateful for the constructive suggestions of the anonymous reviewers which has improved the content and the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemanta Kumar Pati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pati, H.K. A control-period-based distributed adaptive guard channel reservation scheme for cellular networks. Wireless Netw 19, 1739–1753 (2013). https://doi.org/10.1007/s11276-013-0564-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0564-2

Keywords

Navigation