Skip to main content
Log in

Performance of DTN protocols in space communications

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Delay/disruption tolerant networking (DTN) was developed to enable automated network communications despite the long link delay and frequent link disruptions that generally characterize space communications. The performance of DTN convergence layer adapter (CLA) protocols over asymmetric space communication channels has not yet been comprehensively characterized. In this paper, we present an experimental performance evaluation of DTN CLA protocols for reliable data transport over a space communication infrastructure involving asymmetric channel rates, with particular attention to the recently developed Licklider transmission protocol (LTP) CLA (i.e., LTPCL). The performance of LTPCL is evaluated in comparison with other two reliable CLAs, TCP CLA and a hybrid of TCP CLA and LTPCL, for long-delay cislunar communications in the presence of highly asymmetric channel rates. LTPCL is also evaluated and analyzed in a deep-space communication scenario characterized by a very long link delay and lengthy link disruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Personal communication with Dr. Lloyd Wood, August 24, 2012.

References

  1. Jackson, J. (2005). The interplanetary internet. IEEE Spectrum, 42(8), 31–35.

    Article  Google Scholar 

  2. Consultative Committee for Space Data Systems. (2006.) Cislunar space internetworking—Architecture. Draft Informational Report, CCSDS 730.1-G-0, Draft Green Book. National Aeronautics and Space Administration, Washington, USA, December 27, 2006.

  3. Postel, J. (1981). Transmission control protocol—Darpa Internet program—Protocol specification. IETF Request for Comments RFC 793, September 1981.

  4. Postel, J. (1981). Internet protocol—Darpa Internet program—Protocol specification. IETF Request for Comments RFC 791, September 1981.

  5. Lakshman, T., & Madhow, U. (1997). The performance of TCP/IP for networks with high bandwidth-delay products and random loss. IEEE/ACM Transactions on Networking, 5(3), 336–350.

    Article  Google Scholar 

  6. Akyildiz, I. F., Akan, O. B., Chen, C., Fang, J., & Su, W. (2003). InterPlanetary Internet: State-of-the-art and research challenges. Computer Networks Journal (Elsevier), 43(2), 75–113.

    Article  MATH  Google Scholar 

  7. Durst, R., Miller, G., & Travis, E. (1997). TCP extensions for space communication. ACM/Kluwer WINET Journal, 3(5), 389–403.

    Article  Google Scholar 

  8. Henderson, T., & Katz, R. (1999). Transport protocols for internet-compatible satellite networks. IEEE Journal on Selected Areas in Communications, 17(2), 326–344.

    Article  Google Scholar 

  9. Elaasar, M., Barbeau, M., Kranakis, E., & Li, Z. (2005). Satellite transport protocol handling bit corruption, handoff and limited connectivity. IEEE Transactions on Aerospace and Electronic Systems, 41(2), 489–502.

    Article  Google Scholar 

  10. Akyildiz, I. F., Morabito, G., & Palazzo, S. (2001). TCP Peach: A new congestion control scheme for satellite IP networks. IEEE/ACM Transactions on Networking, 9(3), 307–321.

    Article  Google Scholar 

  11. Katabi, D., Handley, M., & Rohrs, C. (2002). Congestion control for high bandwidth-delay product networks. Proceedings of SIGCOMM’02, 32(4), 89–102.

    Article  Google Scholar 

  12. Zhou, K., Yeung, K., & Li, V. (2004). P-XCP: A-transport layer protocol for satellite IP network. Proceedings of IEEE Globecom, 5, 2707–2711.

    Google Scholar 

  13. Akan, O., Fang, J., & Akyildiz, I. F. (2004). TP-Planet: A reliable transport protocol for interplanetary Interne. IEEE Journal on Selected Areas in Communications, 22(2), 348–361.

    Article  Google Scholar 

  14. Taleb, T., Kato, N., & Nemoto, Y. (2004). An explicit and fair window adjustment method to enhance TCP efficiency and fairness over multiple satellite networks. IEEE Journal on Selected Areas in Communications, 22(2), 371–387.

    Article  Google Scholar 

  15. Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M., & Wang, R. (2002). TCP Westwood: End-to-end congestion control for wired/wireless networks. ACM/Kluwer Wireless Networks (WINET) Journal, 8(5), 467–479.

    Article  MATH  Google Scholar 

  16. Marchese, M., Rossi, M., & Morabito, G. (2004). PETRA: Performance enhancing transport architecture for satellite communications. IEEE Journal on Selected Areas in Communications, 22(2), 320–332.

    Article  Google Scholar 

  17. Luglio, M., Sanadidi, M., Gerla, M., & Stepanek, J. (2004). On-board satellite ‘split TCP’ proxy. IEEE Journal on Selected Areas in Communications, 22(2), 362–370.

    Article  Google Scholar 

  18. Burleigh, S., Hooke, A., Torgerson, L., Fall, K., Cerf, V., Durst, R., et al. (2003). Delay-tolerant networking: An approach to interplanetary Internet. IEEE Communications Magazine, 41(6), 128–136.

    Article  Google Scholar 

  19. Wang, R., Taleb, T., Jamalipour, A., & Sun, B. (2009). Protocols for reliable data transport in space Internet. IEEE Communications Surveys and Tutorials 11 (2), Second Quarter, 21–32.

    Google Scholar 

  20. Fall, K. (2003). A delay-tolerant network architecture for challenged internet. In Proceedings of SIGCOMM03 (pp. 27–34). Karlsruhe, Germany, August 2003.

  21. Warthman, F. (2003). Delay-tolerant networks (DTNs): A tutorial. Wartham Associates, 2003, [Online]. Available: http://www.ipnsig.org/reports/DTN_Tutorial11.pdf.

  22. Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., et al. (2007). Delay-tolerant networking architecture. IETF Request for Comments RFC 4838, [Online]. Available: http://www.ietf.org/rfc/rfc4838.txt.

  23. The Space Internetworking Strategy Group (SISG). (2008). Recommendations on a strategy for space internetworking. Report of the Interagency Operations Advisory Group, July 28, 2008.

  24. Burleigh, S., & Scott, K. (2007). Bundle protocol specification. IETF Request for Comments RFC 5050, November 2007, [Online]. Available: http://www.ietf.org/rfc/rfc5050.txt.

  25. Demmer, M., & Ott, J. (2008). Delay tolerant networking TCP convergence layer protocol. IETF DTNRG IRTF Research Group, <draft-irtf-dtnrg-tcp-clayer-02.txt>, November 2008, [Online]. Available: http://www.ietf.org/internet-drafts/draft-irtf-dtnrg-tcp-clayer-02.txt.

  26. Kruse, H., & Ostermann, S. (2008). UDP Convergence Layers for the DTN Bundle and LTP Protocols. IETF DTNRG IRTF Research Group, <draft-irtf-dtnrg-udp-clayer-00.txt> (Work in Progress), November 2008, [Online]: http://tools.ietf.org/html/draft-irtf-dtnrg-udp-clayer-00.

  27. Wood, L., Eddy, W. M., Ivancic, W., McKim, J., & Jackson, C. (2007). Saratoga: A delay-tolerant networking convergence layer with efficient link utilization. In Proceedings of the international workshop on space and satellite communications (IWSSC) (pp. 168–172). Salzburg, Austria, September 2007.

  28. Burleigh, S., Ramadas, M., & Farrell, S. (2008). Licklider transmission protocol—Motivation. IETF Request for Comments RFC 5325, September 2008, [Online]. Available: http://www.ietf.org/rfc/rfc5325.txt?number=5325.

  29. Ramadas, M., Burleigh, S., & Farrell, S. (2008). Licklider transmission protocol—Specification. IETF Request for Comments RFC 5326, September 2008, [Online]. Available: http://www.ietf.org/rfc/rfc5326.txt?number=5326.

  30. Braden, R. (1989). Requirements for Internet hosts—Communication layers. IETF Request for Comments RFC 1122, October 1989, [Online]. Available: http://www.ietf.org/rfc/rfc1122.txt.

  31. Kim, B., & Lee, J. (2004). Retransmission loss recovery by duplicate acknowledgment counting. IEEE Communications Letters, 8(1), 69–71.

    Article  Google Scholar 

  32. Balakrishnan, H., Padmanabhan, V. N., Fairhurst, G., & Sooriyabandara, M. (2002). TCP performance implications of network path asymmetry. IETF Request for Comments RFC 3449, December 2002, [Online]. Available: http://www.ietf.org/rfc/rfc3449.txt.

  33. Burleigh, S. (2008). Interplanetary overlay network design and operation V1.8. JPL D-48259, Jet Propulsion Laboratory, California Institute of Technology, CA, February 2008, [Online]: https://ion.ocp.ohiou.edu/legacy/.

  34. Criscuolo, E., Hogie, K., & Parise, R. (2001). Transport protocols and applications for Internet use in space. Proceedings of IEEE Aerospace Conference, 2, 951–962.

    Google Scholar 

  35. Jain, S., Fall, K., & Patra, R. (2004). Routing in a delay tolerant network. In Proceedings of ACM SIGCOMM’ 04, August–September 2004.

  36. Jain, S., Demmer, M., Patra, R., & Fall, K. (2005). Using redundancy to cope with failures in a delay tolerant network. In Proceedings of ACM SIGCOMM05. Philadelphia, PA, August 2005.

  37. Zhang, Z. (2006). Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: overview and challenges. IEEE Communications Survey and Tutorials 8 (1), 1st Quarter, 24–37.

    Google Scholar 

  38. Spyropoulos, T., Rais, R., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. ACM-Springer Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  39. Jones, E. P. C., Li, L., Schmidtke, J., & Ward, P. A. S. (2007). Practical routing in delay-tolerant networks. IEEE Transactions on Mobile Computing, 6(8), 943–959.

    Article  Google Scholar 

  40. Bisio, I., Cello, M., de Cola, T., & Marchese, M. (2009). Combined congestion control and link selection strategies for delay tolerant interplanetary networks. In Proceedings of the IEEE Global Communications Conference, Globecom 2009, Honolulu, HI, Nov.–Dec. 2009.

  41. Bisio, I., de Cola, T., Marchese, M. (2008). Congestion aware routing strategies for DTN-based Interplanetary Networks. In Proceedings of the IEEE global communications conference, Globecom 2008, New Orleans, LA, November–December 2008.

  42. Burleigh, S., Jennings, E., & Schoolcraft, J. (2006). Autonomous congestion control in delay-tolerant networks. In Proceedings of AIAA 9th international conference on space operations (SpaceOps). Rome, Italy, June 2006.

  43. de Rango, F., Tropea, M., Laratta, G. B., & Marano, S. (2008). Hop-by-hop local flow control over Interplanetary networks based on DTN architecture. In Proceedings of IEEE international conference on communications (ICC). Beijing, China, June 2008.

  44. Caini, C., Cornice, P., Firrincieli, R., & Lacamera, D. (2008). A DTN approach to satellite communications. IEEE Journal on Selected Areas in Communications, Special Issue on Delay and Disruption Tolerant Wireless Communication, 26(5), 820–827.

    Article  Google Scholar 

  45. Ivancic, W., Eddy, W., Wood, L., Stewart, D., Jackson, C., Northam, J., et al. (2008). Delay/Disruption-Tolerant Network Testing Using a LEO Satellite. In Proceedings of the 8th annual NASA earth science technology conference (ESTC). University of Maryland, June 2008.

  46. Clare, L. (2009). Delay/Disruption tolerant networking for space. Presented at Space-enabled global communications & electronic systems industry update. Irvine, CA: Cisco Systems. August 2009.

  47. Jenkins, A., Kuzminsky, S., Gifford, K., Pitts, R., & Nichols, K. (2010). Delay/Disruption-Tolerant Networking: Flight test results from the international space station. In Proceedings of IEEE aerospace conference 2010. Big Sky, Montana, March 2010.

  48. Cerf, V., Burleigh, S., Jones, R., Wyatt, J., & Hooke, A. (2009). First deep space node on the interplanetary internet: The deep impact networking experiment (DINET). Presented at Ground System Architectures Workshop 2009. Torrance Marriott South Bay, Torrance, CA, March 2009.

  49. Wyatt, J., Burleigh, S., Jones, R., Torgerson, L., & Wissler, S. (2009). Disruption tolerant networking flight validation experiment on NASA’s EPOXI. In Proceedings of the first international conference on advances in satellite and space communications (SPACOMM) 2009 (pp. 187–196). Colmar, France, July 2009.

  50. Wang, R., Wu, X., Zhang, Q., Taleb, T., Zhang, Z., & Hou, J. (2011). Experimental evaluation of TCP-based DTN for cislunar communications in presence of long link disruption. Special issue on opportunistic and delay tolerant networks of EURASIP Journal on Wireless Communications and Networking (Vol. 2011, January 2011), Article ID 720671. doi:10.1155/2011/720671, [Online]. Available: (http://downloads.hindawi.com/journals/wcn/2011/720671.pdf).

  51. Consultative Committee for Space Data Systems. (2010). Rationale, scenarios, and requirements for DTN in space. Informational Report, CCSDS 734.0-G-1, Green Book. National Aeronautics and Space Administration, Washington, USA, August 2010.

  52. Kutscher, D., Loos, K., & Greifenberg, J. (2007) Uni-DTN: A DTN convergence layer protocol for unidirectional transport. Internet Draft, <draft-kutscher-dtnrg-uni-clayer-00.txt>, April 2007.

  53. Consultative Committee for Space Data Systems. (2007). CCSDS file delivery protocol (CFDP)—Part 1: Introduction and overview. Informational Report, CCSDS 720.1-G-3, Green Book. National Aeronautics and Space Administration, Washington, USA, April 2007.

  54. Wood, L., McKim, J., Eddy, W. M., Ivancic, W., & Jackson, C. (2012). Using Saratoga with a bundle agent as a convergence layer for delay-tolerant networking. Work in progress as an internet-draft, <draft-wood-dtnrg-saratoga-11>, October 2012, [Online]. Available: https://tools.ietf.org/html/draft-wood-dtnrg-saratoga-11.

  55. Wood, L., McKim, J., Eddy, W. M., Ivancic, W., & Jackson, C. (2012). Saratoga: A scalable file transfer protocol. Work in progress as an internet-draft, <draft-wood-tsvwg-saratoga-11>, March 2012, [Online]. Available: https://tools.ietf.org/html/draft-wood-tsvwg-saratoga-11.

  56. Horan, S., & Wang, R. (2002). Design of a space channel simulator using virtual instrumentation software. IEEE Transactions on Instrumentation and Measurement, 51(5), 912–916.

    Article  Google Scholar 

  57. Wang, R., Burleigh, S., Parik, P., Lin, C-J., & Sun, B. (2011). Licklider transmission protocol (LTP)-based DTN for cislunar communications. IEEE/ACM Transactions on Networking, 19(2), 359–368.

    Article  Google Scholar 

  58. National Aeronautics and Space Administration. (2002). Space network users’ guide (SNUG). Rev. 8. Greenbelt, MD: Goddard Space Flight Center. June 2002.

  59. Moser, J., & Osborne, W. (1995). Error pattern generation for coded BPSK. NMSU-ECE-95–007.

  60. Sklar, B. (2001). Digital communications—Fundamentals and applications (2nd ed., pp. 117–119). Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  61. Dowdy, S., & Wearden, S. (1991). Statistics for research (2nd ed.). New York: Wiley.

    MATH  Google Scholar 

  62. Arsham, H. (1988). Kuiper’s P-value as a measuring tool and decision procedure for the goodness-of-fit test. Journal of Applied Statistics, 15(2), 131–135.

    Article  MathSciNet  Google Scholar 

  63. TCP Connection Analysis Tool: TCPTRACE, [Online]. Available: http://www.tcptrace.org/manual/index.html.

Download references

Acknowledgments

The research described in this paper was performed in part at the JPL, California Institute of Technology, under a contract with the NASA and supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61032003 and Grant 61201215. The authors would like to acknowledge Scott C. Burleigh at JPL, Caltech, who has been leading the development of the DTN in space, for the help in implementing the DTN protocols over the testbed. He is particularly appreciated for detailed discussions and careful proof reading of the manuscript that have helped to significantly improve the quality of this paper. The paper could not have been completed without his significant help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruhai Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Yu, Q., Wang, R. et al. Performance of DTN protocols in space communications. Wireless Netw 19, 2029–2047 (2013). https://doi.org/10.1007/s11276-013-0582-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0582-0

Keywords

Navigation