Skip to main content
Log in

Distributed decision fusion over fading channels in hierarchical wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this work, we investigate distributed decision fusion in hierarchical wireless sensor networks that are degraded by fading and noise. With the use of the complete fading channel state information (CSI), we first derive the likelihood ratio test (LRT) based optimum fusion rule, which we call LRT–CSI. Then, we relax the use of the complete CSI and only the exact phase information is employed together with channel envelope statistics (CS), and we develop another LRT based fusion rule named LRT–CS, which is computationally simpler to implement compared to LRT–CSI. Finally, we analyze the detection performance of all the proposed fusion rules through extensive numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Although we have assumed clusters with equal size K, the expressions and derivations are still same for the case of clusters with different sizes. Specifically, it is enough to replace K with K m , which denotes the size of the mth cluster.

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 102–114.

  2. Varshney, P. K. (1997). Distributed detection and data fusion. New York: Springer.

    Book  Google Scholar 

  3. Tenney, R. R., & Sandell, N. R, Jr. (1981). Detection with distributed sensors. Transactions Aerospace and Electronic Systems, AES-17, 501–510.

    Article  MathSciNet  Google Scholar 

  4. Hoballah, I. Y., & Varshney, P. K. (1989). Distributed Bayesian signal detection. IEEE Transactions on Information Theory, 35, 995–1000.

    Article  MATH  MathSciNet  Google Scholar 

  5. Thomopoulos, S. C. A., Viswanathan, R., & Bougoulias, D. K. (1989). Optimal distributed decision fusion. IEEE Transactions on Aerospace and Electronic Systems, 25, 761–765.

    Article  Google Scholar 

  6. Chair, Z., & Varshney, P. K. (1986). Optimal data fusion in multiple sensor detection system. IEEE Transactions on Aerospace and Electronic Systems, 22, 98–101.

    Article  Google Scholar 

  7. Tang, Z. B., Pattipatti, K., & Kleinman, D. L. (1991). An algorithm for determining the detection thresholds in a distributed detection problem. IEEE Transactions on Systems, Man and Cybernetics, 21, 231–237.

    Article  MATH  Google Scholar 

  8. Helstrom, C. W. (1995). Gradient algorithms for quantization levels in distributed systems. IEEE Transactions on Aerospace and Electronic Systems, 31, 390–398.

    Article  Google Scholar 

  9. Lauer, G. S., & Sandell, N. R. (1982). Distributed detection of known signal in correlated noise. Burlington: Rep. ALPHATECH.

    Google Scholar 

  10. Aalo, V., & Viswanathan, R. (1989). On distributed detection with correlated sensors: Two examples. IEEE Transactions on Aerospace and Electronic Systems, 25, 414–421.

    Article  Google Scholar 

  11. Kam, M., Chang, W., & Zhu, Q. (1991). Hardware complexity of binary distributed detection systems with isolated local Bayesian detectors. IEEE Transactions on Systems, Man and Cybernetics, 21(3), 565–571.

    Article  Google Scholar 

  12. Drakopoulos, E., & Lee, C. C. (1991). Optimum multisensor fusion of correlated local decisions. IEEE Transactions on Aerospace and Electronic Systems, 27(4), 593–605.

    Article  Google Scholar 

  13. Kam, M., Zhu, Q., & Gray, W. S. (1992). Optimal data fusion of correlated local decisions in multiple sensor detection systems. IEEE Transactions on Aerospace and Electronic Systems, 28(3), 916–920.

    Article  Google Scholar 

  14. Willett, P. K., Swaszek, P. F., & Blum, R. S. (2000). The good, bad, and ugly: Distributed detection of a known signal in dependent Gaussian noise. IEEE Transactions on Signal Processing, 48(12), 3266–3279.

    Article  MathSciNet  Google Scholar 

  15. Rago, C., Willett, P. K., & Bar-Shalom, Y. (1996). Censoring sensors: A low-communication-rate scheme for distributed detection. IEEE Transactions on Aerospace and Electronic Systems, 32(2), 554–568.

    Article  Google Scholar 

  16. Yu, C. T., & Varshney, P. K. (1998). Paradigm for distributed detection under communication constraints. Optical Engineering, 37(2), 417–426.

    Article  Google Scholar 

  17. Gini, F., Lombardini, F., & Verrazzani, L. (1998). Decentralised detection stratigies under communication constraints. in Proceedings of the Institute of Electical Engineering, Part F: Radar, Sonar, Navigation, 145, 199–208.

  18. Chamberland, J., & Veeravalli, V. V. (2003). Decentralized detection in sensor networks. IEEE Transactions on Signal Processing, 51(2), 407–416.

    Article  Google Scholar 

  19. Appadwedula, S., Veeravalli, V. V., & Jones, D. L. (2002). Robust and locally-optimum decentralized detection with censoring sensors. Fifth International Conference on Infomiation Fusion, Proceedings, 1, 5643.

  20. Thomopoulos, S. C. A., & Zhang, L. (1992). Distributed decision fusion with networking delays and channel errors. Information Sciences, 66, 91–118.

    Article  MATH  MathSciNet  Google Scholar 

  21. Chen, B., & Willet, P. K. (2005). On the optimality of the likelihood-ratio test for local sensor decision rules in the presence of nonideal channels. IEEE Transactions on Information Theory, 51(2), 693–699.

    Article  MATH  Google Scholar 

  22. Chen, B., Jiang, R., Kasetkasem, T., & Varshney, P. K. (2004). Channel aware decision fusion in wireless sensor networks. IEEE Transactions on Signal Processing, 52(12), 3454–3458.

    Article  MathSciNet  Google Scholar 

  23. Niu, R., Chen, B., & Varshney, P. K. (2006). Fusion of decisions transmitted over Rayleigh fading channels in wireless sensor networks. IEEE Transaction on Signal Processing, 54(3), 1018–1027.

    Article  Google Scholar 

  24. Tian, Q., & Coyle, E. J. (2007). Optimal distributed detection in clustered wireless sensor networks. IEEE Transactions on Signal Processing, 55(7), 3892–3904.

    Article  MathSciNet  Google Scholar 

  25. Ferrari, G., Martalo, M., & Pagliari, R. (2011). Decentralized detection in clustered sensor networks. IEEE Transactions on Aerospace and Electronic Systems, 47(2), 959–973.

    Article  Google Scholar 

  26. Tsitsiklis, J. N. (1993). Decentralized detection. Advances in Statistical Signal Processing, 2, 297–334.

    Google Scholar 

  27. Lin, Y., Chen, B., & Varshney, P. K. (2005). Decision fusion rules in multi-hop wireless sensor networks. IEEE Transactions on Aerospace and Electronic Systems, 41, 475–488.

    Article  Google Scholar 

  28. Proakis, J. G. (2001). Digital communications (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  29. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1997). Numerical recipes in C. New York: Cambridge University Press.

    Google Scholar 

  30. Ye, N. (Ed.). (2003). The handbook of data mining. Lawrance Erlbaum Associates.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Keskinoz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eritmen, K., Keskinoz, M. Distributed decision fusion over fading channels in hierarchical wireless sensor networks. Wireless Netw 20, 987–1002 (2014). https://doi.org/10.1007/s11276-013-0649-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0649-y

Keywords

Navigation