Skip to main content
Log in

Survey on mobile social networking in proximity (MSNP): approaches, challenges and architecture

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Recently, mobile social networks (MSN) have gained tremendous attention, which free users from face-to-monitor life, while still can share information and stay in touch with their friends on the go. However most MSN applications regard mobile terminals just as entry points to existing social networks, in which centralized servers (for storage and processing of all application/context data) and continual Internet connectivity are prerequisites for mobile users to exploit MSN services, even though they are within proximity area (like campus, event spot, and community, etc.), and can directly exchange data through various wireless technologies (e.g., Bluetooth, WiFi Direct, etc.). In this paper, we focus on mobile social networking in proximity (MSNP), which is explicitly defined in our paper as: MSNP is wireless peer-to-peer (P2P) network of spontaneously and opportunistically connected nodes, and uses geo-proximity as the primary filter in determining who is discoverable on the social network. In this paper, first, primary support approaches related to MSNP available in literature, are summarized and compared, including MSN, mobile P2P and opportunistic networks. And then, we offer the special characteristics of MSNP, open issues and potential solutions. A networking technologies and platform independent architecture is proposed for developing MSNP applications, and proof-of-concept implementation of WiFi direct based MSNP application is also provided. Our primary goal is to identify the characteristics, technical challenges and potential solutions for future MSNP applications, capable to flexibly adapt to different application domains and deployment requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Facebook statistics, http://www.facebook.com/press/info.php?statistics.

  2. Jianping, H. E., David, J. Miller, & Kesidis, G., Interest-group discovery and management by peer-to-peer online social networks, Technical report, http://www.cse.psu.edu/research/publications/tech-reports/2012/CSE%2013-001.pdf.

  3. https://foursquare.com/.

  4. Eagle, N., & Pentland, A. (2006). Reality mining: Sensing complex social systems. Personal and Ubiquitous Computing, 10(4), 255–268.

    Google Scholar 

  5. https://www.alljoyn.org/.

  6. Kaisa Väänänen-Vainio-Mattila et al. (2010). User experience of social ad hoc networking: Findings from a large-scale field trial of TWIN, In Proceedings of the 9th international conference on mobile and ubiquitous multimedia (MUM).

  7. He, W., Huang, Y., Nahrstedt, K. & Wu, B. (2010). Message propagation in ad-hoc-based proximity mobile social network, In Proceedings of pervasive computing and communications workshops 2010.

  8. Sapuppo, S. L. A. (2010). Local social networks. In Proceedings of international conference on telecommunication technology and applications, 2010.

  9. Chang, C., Srirama, S. N., & Ling, S. (2012). An adaptive mediation framework for mobile P2P social content sharing. Lecture Notes in Computer Science (LNCS), 7636, 374–388.

    Article  Google Scholar 

  10. Chang, C., Srirama, S. N. & Krishnaswamy, S., Ling, S. (2013). Proactive web service discovery for mobile social network in proximity. Journal of Next Generation Information Technology (JNIT), 4(2).

  11. Kayastha, N., Niyato, D., Wang, P. & Hossain, E. (2011). Applications, architectures, and protocol design issues for mobile social networks: A survey. In Proceedings of the IEEE 99(12).

  12. Bellavista, P., Montanari, R., & Das, S. K. (2013). Mobile social networking middleware: A survey. Elsevier, Pervasive and Mobile Computing, 9(4), 437–453.

    Article  Google Scholar 

  13. Zhang, B., Wang, Y., Vasilakos, A. V., Ma, J. (2013). Mobile social networking: Reconnect virtual community with physical space, Telecommunication Systems Journal 52(3).

  14. Wang, Y., Tang, J., Jin, Q. & Ma, J. (2013). Overview mobile social networking in proximity (MSNP): Applications, characteristics and challenges, In Proceedings of the 11th IEEE/IFIP international conference on embedded and ubiquitous computing (EUC).

  15. Eagle, N., & Pentland, A. (2005). Social serendipity: Mobilizing social software. IEEE Pervasive Computing, 4(2), 28–34.

    Article  Google Scholar 

  16. Gupta, A., Kalra, D., Boston, & Borcea, C. (2008). MobiSoC: A middleware for mobile social computing applications. Mobile Networks and Application, 14(1), 35–52.

    Article  Google Scholar 

  17. Sapuppo. (2010). Spiderweb: A social mobile network, In Proceedings of the European Wireless Conference (EW).

  18. Mani, M., Anh-Minh, N., & Crespi N., (2010). SCOPE: A prototype for spontaneous P2P social networking. In Proceedings of the 8th IEEE international conference on pervasive computing and communications workshops (PERCOM workshops).

  19. Ford, et al. (2006). Persistent personal names for globally connected mobile devices, In Proceedings of OSDI.

  20. JXTA Community Projects, https://jxta.dev.java.net/.

  21. Kalofonos, D. N., et al. (2008). MyNet: A platform for secure P2P personal and social networking services, In Proceedings of the 6th IEEE international conference on pervasive computing and communications (PERCOM).

  22. Wang, A. I., Bjørnsg°ard T., & Saxlund K. (2007). Peer2Me—Rapid application framework for mobile peer-to-peer applications, In Proceedings of the international Symposium on collaborative technologies and systems (CTS).

  23. https://www.media.mit.edu/research/groups/information-ecology.

  24. Toledano, E., et al. (2013). CoCam: Real-time photo sharing based on opportunistic P2P networking, In Proceedings of the 10th IEEE consumer communications and networking conference (CCNC).

  25. Zhang, G. D., Yu, Z., & Zhou, X. (2012). Enhancing spontaneous interaction in opportunistic mobile social networks. Communications in Mobile Computing (ComC), 1(6), 1–6.

    MATH  Google Scholar 

  26. Boldrini, C., Conti, M., & Passarella, A. (2010). Design and performance evaluation of ContentPlace, a social-aware data dissemination system for opportunistic networks, Elsevier, Computer Networks, 54(4).

  27. Pelsui, L., Passarella, A. & Conti, M. (2006). Opportunistic networking: Data forwarding in disconnected mobile ad hoc networks, IEEE Communication Magazine 134–141.

  28. Panisson, A., Barrat, A., Cattuto, C., Van den Broeck, W., Ruffo, G., & Schifanella, R. (2012). On the dynamics of human proximity for data diffusion in ad-hoc networks. Ad Hoc Networks, 10, 1532–1543.

    Article  Google Scholar 

  29. Marco, P., Michele, A. & Francesco, Z. (2010). GeoKad: A P2P distributed localization protocol. In Proceedings of IEEE PERCOM workshop.

  30. Su, J., Scott, J., Hui, P., Crowcroft, J., de Lara, E., Diot, C., Goel, A., Lim, M. & Upton, E. (2007). Haggle: Seamless networking for mobile applications, In Proceedings of Ubicomp.

  31. Osnat (Ossi) Mokryn, Dror Karmi, Akiva Elkayam, Tomer Teller (2012). Help me: Opportunistic smart rescue application and system. In Proceedings of the 11th annual mediterranean workshop on Ad hoc Networking 98–105.

  32. Papandrea, M., Vanini, S. & Giordano, S. (2009). A lightweight localization architecture and application for opportunistic networks. In Proceedings of the world of wireless, mobile and multimedia networks and workshops (WoWMoM).

  33. Mart′ın-Campillo, J. Crowcroft, E. Yoneki, R. Mart′I and C. Mart′ınez- Garc′ıa (2010). Using Haggle to create an electronic triage tag, In Proceedings of the second ACM international workshop on mobile opportunistic networking 167–170.

  34. Nordström, E., Aldman, D., Bjurefors, F. & Rohner, C. (2009). Search-based picture sharing with mobile phones, In Proceedings of the 10th ACM international symposium on mobile ad hoc networking and computing (MobiHoc), 327–328.

  35. Pietilainen, A.-K., Oliver, E., LeBrun, J., Varghese, G. & Diot, C. (2009) Mobiclique: Middleware for mobile social networking, In Proceedings ACM workshop online social network (WOSN), 49–54.

  36. Dubois, D., Bando, Y., Watanabe, K., & Holtzman, H. (2013) ShAir: Extensible middleware for mobile peer-to-peer resource sharing, In Proceedings of the 9th joint meeting on foundations of software engineering (ESEC/FSE Industrial Track).

  37. Trifunovic, S., Distl, B., Schatzmann, D., & Legendre, F. (2011). WiFi-Opp: Ad-Hoc-less opportunistic networking. In Proceedings of ACM mobicom workshop on challenged networks (CHANTS).

  38. http://www.peerdevicenet.net/.

  39. Stauffer, M. (2012). Connectivity solutions for smart TVs. In Proceedings of the IEEE international conference on consumer electronics-Berlin (ICCE-Berlin), 245–249.

  40. Elwhishi, A., Ho, P.-H., & Shihada, B. (2013). Contention aware mobility prediction routing for intermittently connected mobile network, Available online, Springer/ACM Wireless Networks (WINET), doi:10.1007/s11276-013-0588-7.

  41. Dressler, F. & Gerla, M. (2013). A framework for inter-domain routing in virtual coordinate based mobile networks, Springer/ACM Wireless Networks (WINET), 19.

  42. Siddiqui, F., Zeadally, S., Kacem, T., & Fowler, S. (2012). Zero configuration networking: Implementation, performance, and security. Elsevier, Computers and Electrical Engineering, 38(5), 1129–1145.

    Article  Google Scholar 

  43. http://pomi.stanford.edu/content.php?page=about.

  44. Zhang, R., Zhang, Y., Sun, J., & Yan, G., (2012). Fine-grained private matching for proximity-based mobile social networking, In Procedings of INFOCOM.

  45. Dodson, B., Vo, I., Purtell, T. J., Cannon A., & Lam, M. S. (2012) Musubi: Disintermediated interactive social feeds for mobile devices. In Proc. of the 21st International conference on World Wide Web (WWW).

  46. Yu, Z., Liang, Y., Xu, B., Yang, Y., & Guo, B. (2011). Towards a smart campus with mobile social networking. In: Proceedings of the IEEE international conference on internet of things (iThings).

  47. Camps-Mur, Garcia-Saavedra, A., & Serrano, P., (2013). Device to device communications with wifi direct: Overview and experimentation, IEEE Wireless Communications Magazine, 20(3).

  48. Wang, Y., Nakao, A., Vasilakos, A. V. & Ma, J. (2011) On the effectiveness of service differentiation based resource-provision incentive mechanisms in dynamic and autonomous P2P networks, Elsevier, Computer Network (COMNET), 55(17).

  49. Crocker, P. B., (2011). Proximity based mobile social networking: Applications and technology, making new connections in the physical world, Smith’s Point Analytics.

Download references

Acknowledgments

The work was partially supported by the JiangSu 973 Project BK2011027 and NSFC Grant 61171092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Vasilakos, A.V., Jin, Q. et al. Survey on mobile social networking in proximity (MSNP): approaches, challenges and architecture. Wireless Netw 20, 1295–1311 (2014). https://doi.org/10.1007/s11276-013-0677-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0677-7

Keywords

Navigation