Skip to main content

Advertisement

Log in

IBLEACH: intra-balanced LEACH protocol for wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs) are composed of many low cost, low power devices with sensing, local processing and wireless communication capabilities. Recent advances in wireless networks have led to many new protocols specifically designed for WSNs where energy awareness is an essential consideration. Most of the attention, however, has been given to the routing protocols since they might differ depending on the application and network architecture. Minimizing energy dissipation and maximizing network lifetime are important issues in the design of routing protocols for WSNs. In this paper, the low-energy adaptive clustering hierarchy (LEACH) routing protocol is considered and improved. We propose a clustering routing protocol named intra-balanced LEACH (IBLEACH), which extends LEACH protocol by balancing the energy consumption in the network. The simulation results show that IBLEACH outperforms LEACH and the existing improvements of LEACH in terms of network lifetime and energy consumption minimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Khedr, A.M., & Osamy, W. (2011). Effective target tracking mechanism in a self-organizing wireless sensor network. Journal of Parallel an Distributed Computing, 71, 1318–1326.

    Article  Google Scholar 

  2. Khedr, A.M., & Osamy, W. (2011). Minimum perimeter coverage of query regions in heterogeneous wireless sensor networks. Information Sciences, 181, 3130–3142.

    Article  Google Scholar 

  3. Khedr, A. M., & Osamy, W. (2006). A topology discovery algorithm for sensor network using smart antennas. Computer Communications Journal, 29, 2261–2268.

    Article  Google Scholar 

  4. Khedr, A. M., Osamy, W., & Agrawal, D. P. (2009). Perimeter discovery in wireless sensor networks. Journal of Parallel and Distributed Computing , 69, 922–929.

    Article  Google Scholar 

  5. Khedr, A. M., & Osamy, W. (2007). Target tracking mechanism for cluster based sensor networks. Applied Mathematics and Information Science Journal, 1(3), 287–303.

    MATH  Google Scholar 

  6. Khedr, A. M. (2006). Tracking mobile targets using grid sensor networks. GESJ: Computer Science and Telecommunications, 3(10), 66–84.

    Google Scholar 

  7. Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M., & Zhao, J. (2001). Habitat monitoring: Application driver for wireless communications technology. In Workshop on data communication, Latin America and the Caribbean (pp. 20–41), Costa Rica.

  8. Estrin, D., Govindan, R., Heidemann, J., & Kumar, S. (1999). Next century challenges: Scalable coordination in sensor networks. In Proceedings of the 5th annual ACM/IEEE international conference on mobile computing and networking (pp. 263–270). Seattle, Washington, USA.

  9. Yang, H., & Sikdar, B. (2007). Optimal CH selection in the LEACH architecture. In IEEE international conference on performance, computing, and communications (pp. 93–100).

  10. Latiff, N. M. A., Tsimenidis, C. C., & Sharif, B. S. (2007). Performance comparison of optimization algorithm for clustering in wireless sensor networks. In IEEE International conference on mobile adhoc and sensor systems (pp. 1–4).

  11. Zhang, Z., & Zhang, X. (2009). Research of improved clustering routing algorithm based on load balance in wireless sensor networks. IET International communication conference on wireless mobile and computing (pp. 661–664).

  12. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Hawaii international conference on system sciences (pp. 1–10).

  13. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2002). An applocation-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 662–666.

    Article  Google Scholar 

  14. Ok, C., Lee, S., Mitra, P., & Kumara, S. (2010). Distributed routing in wireless sensor networks using energy welfare metric. Information Sciences, 80(9), 1656–1670.

    Article  Google Scholar 

  15. Saleem, M., Di-Caro, GA., & Farooq, M. (2011). Swarm intelligence based routing protocol for wireless sensor networks: Survey and future directions. Information Sciences, 181(20), 4597–4624.

    Article  Google Scholar 

  16. Srgio, S. P., Aurlio, S. S., & Perkusich, A. (2010). Broadcast routing in wireless sensor networks with dynamic power management and multi-coverage backbones. Information Sciences, 180(5), 653–663.

    Article  Google Scholar 

  17. Rabaey, J. M., Ammer, J., da Silva, J. L. Jr, Patel, D., & Roundy, S. (2000). PicoRadio supports ad hoc ultra low power wireless networking. IEEE Computer, 33(7), 42–48.

    Article  Google Scholar 

  18. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In Proceedings of IEEE Infocom, New York.

  19. Ye, F., Luo, H., Cheng, J., Lu, S., & Zhang, L. (2002). A two-tier data dissemination model for large- scale wireless sensor networks. In Proceedings of Mob-com02, Atlanta, GA.

  20. Shih, E., Cho, S., Ickes, N., Min, R., Sinha, A., Wang, A., & Chandrakasan, A. (2001). Physical layer driven protocol and algorithm design for energy-efficient wireless sensor networks. In Proceedings of the 7th annual ACM/IEEE international conference on mobile computing and networking (Mo-bicom01), Rome, Italy.

  21. Madden, S., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2002). TAG: A tiny aggregation service for ad-hoc sensor networks. In ACM SIGOPS Operating Systems Review - OSDI ’02: Proceedings of the 5th symposium on Operating systems design and implementation (Vol. 36, pp. 131–146).

  22. Pottle, G. J., & Kaiser, W. J. (2000). Embedding the internet: Wireless integrated network sensors. Communications of the ACM, 43(5), 51–58.

    Google Scholar 

  23. Wang, L., & Xiao, Y. (2006). A survey of energy- efficient scheduling mechanisms in sensor network. Journal Mobile Networks and Applications archive, 11(5), 723–740.

    Article  Google Scholar 

  24. Tong, M., & Tang, M. (2010). LEACH-B: an improved LEACH protocol for wireless sensor network. In 6th international conference on wireless communications networking and mobile computing (WiCOM) (pp. 1–4).

  25. Hong, J., Kook, J., Lee, S., Kwon, D., & Yi, S. (2009). T-LEACH: The method of threshold-based CH replacement for wireless sensor networks. Information Systems, 11(5), 513–521.

    Google Scholar 

  26. Zytoune, O., El aroussi, M., Rziza, M., & Aboutajdine, D. (2008). Stochastic low energy adaptive clustering hierarchy. ICGST-CNIR, 8(1), 47–51.

    Google Scholar 

  27. Zytoune, O., Fakhri, Y., & Aboutajdine, D. (2009). A balanced cost cluster-heads selection algorithm for wireless sensor networks. International Journal of Computer Science, 4(1), 21–24.

    Google Scholar 

  28. Junping, H., Yuhui, J., & Liang, D. (2008). A time-based cluster-head selection algorithm for LEACH. In Proceedings of IEEE Symposium on computers and communications, Morocco (ISCC 2008).

  29. Zhiyong, P., & Xiaojuan, L. (2010). The improvement and simulation of LEACH protocol for WSNs. In Software engineering and service sciences (ICSESS), IEEE international conference.

  30. Handy, M. J., Haase, M., & Timmermann, D. (2002). Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In Mobile and wireless communications network, 2002. 4th international workshop, pp. 368–372.

  31. AbuBakr, B., & Lilien, L. (2011). Extending wireless sensor network lifetime in the LEACH-SM protocol by spare selection. In Proceedings of the fifth international conference on innovative mobile and internet services in ubiquitous computing (IMIS ’11) (pp. 277–282). Washington, DC, USA: IEEE Computer Society.

  32. The Network Simulator ns-2, http://www.isi.edu/nsnam/ns/.

  33. Intel Berkely Reseach Lab (IBRL) dataset, (2004). http://db.csail.mit.edu/labdata/labdata.html.

  34. Li, G., He, J., & Fu, Y. (2008). Group-based intrusion detection system in wireless sensor networks. Computer Communications, 31, 4324–4332.

    Article  Google Scholar 

  35. Moshtaghi, M., Havens, T. C., Bezdek, J. C., Park, L., Leckie, C., Rajasegarar, S., Keller, J. M., Palaniswami, M.et al. (2011). Clustering ellipses for anomaly detection. Pattern Recognition, 44, 55–69.

    Article  MATH  Google Scholar 

  36. Moshtaghi, M., Rajasegarar, S., Leckie, C., & Karunasekera, S. (2009). Anomaly detection by clustering ellipsoids in wireless sensor networks. In 5th international conference on intelligent sensors, sensor networks and information processing (ISSNIP) (pp. 331–336).

  37. Rajasegarar, S., Bezdek, J. C., Leckie, C., & Palaniswami, M. (2007). Analysis of anomalies in IBRL data from a wireless sensor network deployment. In International conference on sensor technologies and applications (SensorComm) (pp. 158–163).

  38. Branch, J., Szymanski, B., Giannella, C., Ran, W., & Kargupta, H. (2006). In-network outlier detection in wireless sensor networks. In 26th IEEE international conference on distributed computing systems (ICDCS) (pp. 51–58).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Khedr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salim, A., Osamy, W. & Khedr, A.M. IBLEACH: intra-balanced LEACH protocol for wireless sensor networks. Wireless Netw 20, 1515–1525 (2014). https://doi.org/10.1007/s11276-014-0691-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0691-4

Keywords

Navigation