Skip to main content
Log in

An Efficient, Scalable Key Transport Scheme (ESKTS) for Delay/Disruption Tolerant Networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In the past, security protocols including key transport protocols are designed with the assumption that there are two parties communication with each other and an adversary tries to intercept this communication. In Delay/Disruption Tolerant Networking (DTN), packet delivery relies on intermediate parties in the communication path to store and forward the packets. DTN security architecture requires that integrity and authentication should be verified at intermediate nodes as well as at end nodes and confidentiality should be maintained for end communicating parties. This requires new security protocols and key management to be defined for DTN as traditional end-to-end security protocols will not work with DTN. To contribute towards solving this problem, we propose a novel Efficient and Scalable Key Transport Scheme (ESKTS) to transport the symmetric key generated at a DTN node to other communicating body securely using public key cryptography and proxy signatures. It is unique effort to design a key transport protocol in compliance with DTN architecture. ESKTS ensures that integrity and authentication is achieved at hop-by-hop level as well as end-to-end level. It also ensures end-to-end confidentiality and freshness for end communicating parties. This scheme provides a secure symmetric key transport mechanism based on public key cryptography to exploit the unique bundle buffering characteristics of DTN to reduce communication and computation cost .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fall, K., & Farrell, S. (2008). DTN: An architectural retrospective. IEEE Journal on Selected Areas in Communications, 26(5), 828–836. doi:10.1109/JSAC.2008.080609.

    Google Scholar 

  2. Caini, C., Cruickshank, H. S., Farrell, S., & Marchese, M. (2011). Delay- and Disruption-Tolerant Networking (DTN): An alternative solution for future satellite networking applications. Proceedings of the IEEE, 99(11), 1980–1997.

    Article  Google Scholar 

  3. Hur, J., & Kang, K. (2013). Secure data retrieval for decentralized disruption tolerant military networks. IEEE/ACM Transactions on Networking. doi:10.1109/TNET.2012.2210729.

  4. Scott, K., & Burleigh, S. (2007). RFC 5050, Bundle protocol specifications. IRTF DTN Research Group. http://tools.ietf.org/html/rfc5050.

  5. D’Souza, R. J., & Jose, J. (2010). Routing approaches in delay tolerant networks: A survey. International Journal of Computer Applications, 1(17), 0975–8887.

    Google Scholar 

  6. Farrell, S., Weiss, H., Symington, S., & Lovell, P. (2011). Bundle security protocol specification. SPARTA, Inc. http://tools.ietf.org/html/rfc6257.

  7. Farrell, S., & Cahill, V. (2006). Security considerations in space and delay tolerant networks. In 2nd IEEE international conference on space mission challenges for information technology (SMC-IT’06) (pp. 29–38). Pasadena, CA: SMC-IT. doi:10.1109/SMC-IT.2006.66.

  8. Farrell, S. (2007). DTN key management requirements. Internet-Draft, draft-farrell-dtnrg-km-00.

  9. Symington, S. F., Farrell, S., Weiss, H., & Lovell, P. (2009). Bundle security protocol specification, draft-irtf-dtnrg-bundle-security-08, IETF draft. March 2009.

  10. Farrell, S., Symington, S. F., Weiss, H., & Lovell, P. (2009). Delay-Tolerant Networking Security Overview, draft-irtf-dtnrg-sec-overview-06, IETF draft. March 2009.

  11. Symington, S. F, Farrell, S., Weiss, H., & Lovell, P. (2011). Bundle Security Protocol Specification. IETF RFC 6257, experimental, May 2011.

  12. Boyd, C., & Mathuria, A. (2003). Protocols for authentication and key establishment. Book: Springer.

    Book  Google Scholar 

  13. Kim, S., Park, S., & Won, D. (1997). Proxy signatures, Revisited. In Y. Han, T. Okamoto, & S. Qing (Eds.), ICICS 1997, LNCS (Vol. 1334, pp. 223–232). Heidelberg: Springer. doi:10.1007/BFb0028478.

  14. Lee, J. -Y., HeeCheon, J., & Kim, S. (2003). An analysis of proxy signatures: Is a secure channel necessary? In M. Joye (Ed.), Topics in cryptology—CT-RSA 2003 (Vol. 2612, pp. 68–79). Berlin/Heidelberg: Springer. doi:10.1007/3-540-36563-X_5.

  15. Boldyreva, A., Palacio, A., & Warinschi, B. (2012). Secure proxy signatures for delegation of signing rights. Journal of Cryptology, 25(1), 57–115. doi:10.1007/s00145-010-9082-x.

    Google Scholar 

  16. Keränen, A., Kärkkäinen, T., & Ott, J. (2010). Simulating mobility and DTNs with the ONE (invited paper). JCM, 5(2), 92–105.

    Article  Google Scholar 

  17. Keränen, A., Ott, J., & Kärkkäinen, T. (2009). The ONE simulator for DTN protocol evaluation. In Proceedings of the 2nd international conference on simulation tools and techniques for communications, networks and systems, SimuTools 2009, Rome, p. 55.

  18. Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2008). Efficient routing in intermittently connected mobile networks: the multiple-copy cast. IEEE/ACM Transactions on Networking, 16(1), 63–76. doi:10.1109/TNET.2007.897962.

    Google Scholar 

  19. Spyropoulos, T., Rais, R. N. B., Turletti, T., Obraczka, K., & Vasilakos, A. V. (2010). Routing for disruption tolerant networks: taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  20. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (2012). Delay tolerant networks: Protocols and applications. Boca Raton, FL: CRC Press.

    Google Scholar 

  21. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  22. Dvir, A., & Vasilakos, A. V. (2010). Backpressure-based routing protocol for DTNs. In SIGCOMM (pp. 405–406). ACM. doi:10.1145/1851182.1851233.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Nasir Mumtaz Bhutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhutta, M.N.M., Cruickshank, H.S. & Sun, Z. An Efficient, Scalable Key Transport Scheme (ESKTS) for Delay/Disruption Tolerant Networks. Wireless Netw 20, 1597–1609 (2014). https://doi.org/10.1007/s11276-014-0693-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0693-2

Keywords

Navigation