Skip to main content
Log in

Dynamic power management in Wi-Fi Direct for future wireless serial bus

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper presents a performance analysis of Wi-Fi Direct power management schemes and exploits their problems to design a novel, enhanced power management for future wireless USB (WSB) applications. Wi-Fi Direct will become a key technology for the support of future WSB services that require high standards of service quality and power efficiency at the same time. To provide this, Wi-Fi Direct defines two power management schemes, opportunistic power save mode and notice-of-absence. Even though each scheme has its own characteristics and advantages, specification does not have any definition of how to select the schemes and its parameters based on the type of WSB application being serviced. We analyze the properties of the two power management schemes of Wi-Fi Direct, and discover that their performance can greatly vary depending on the number and type of WSB applications that is being transmitted in the network. To solve this problem, we propose a novel power saving algorithm that can dynamically change the power management of Wi-Fi Direct. Our work is extensively evaluated using the Wi-Fi Direct module implemented in the NS-3 simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Note that henceforth in our work, the term GO and WSB host will be used identically.

References

  1. CISCO VNI Forecast widget. http://www.ciscovni.com/vni_forecast/advanced.html.

  2. WGA Specification, WiGig Serial Extension (WSE) Specification version 1.0, Dec 2011.

  3. Camps-Mur, D., Garcia-Saavedra, A., & Serrano, P. (2012). Device to device communications with wi-fi direct: overview and experimentation. IEEE Wireless Communications, 20(3), 96–104.

    Google Scholar 

  4. Wi-Fi Alliance, P2P Technical Group, Wi-Fi Peer-to-Peer (P2P) Technical Specification, vo1 1, 2010.

  5. Wireless USB Specification Rev. 1.1, Sept 2010.

  6. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard P802.11ad/D9.0, 2013.

  7. Kim, K. H., Min, A. Gupta, D., Mohapatra, P. Singh, J. P. (2011). Improving energy efficiency of Wi-Fi sensing on smartphones”, 2011 Proceedings of IEEE Infocom.

  8. Camps-Mur, D., Perez-Costa, X., & Sallent-Ribes, S. (2011). Designing energy efficient access points with Wi-Fi Direct. Computer Networks, 55(13), 2838–2855.

    Article  Google Scholar 

  9. IEEE P802.11™-2012, Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, Standard, IEEE, Mar. 2012.

  10. Choi, J., Ko, Y. & Kim, J. (2003). Enhanced power saving scheme for IEEE 802.11 DCF based wireless networks, 8th International Conference on Personal Wireless Communications, pp. 835–840.

  11. Jung, E., & Vaidya, N. (2008). Improving IEEE 802.11 power saving mechanism. Wireless Networks, 14, 375–391.

    Article  Google Scholar 

  12. Hu, X., Chen, Z., & Yang, Z. (2012). Energy-efficient Scheduling Strategies in IEEE 802.11 Wireless LANs. International Conference on Computer Science and Automation Engineering, pp. 570–572.

  13. ns-3 Documentation, http://www.nsnam.org/docs/release/3.14/doxygen/index.html

  14. Samsung Galaxy S2 specification, http://www.samsung.com/global/microsite/galaxys2/html/specification.html.

  15. Universal Serial Bus Specification, Revision 2.0 Apr. 2000.

  16. Lim, K., Jung, W., Kim, H., Han, J., & Ko, Y. (2013). “Enhanced Power Management for Wi-Fi Direct. IEEE Wireless Communications and Networking Conference 2013.

  17. Quality of Service Design Overview. http://www.ciscopress.com/articles/article.asp?p=357102&seqNum=2.

Download references

Acknowledgments

This work has received funding from the Digital Media & Communications(DMC) R&D Center, Samsung Electronics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Bae Ko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, KW., Seo, Y., Ko, YB. et al. Dynamic power management in Wi-Fi Direct for future wireless serial bus. Wireless Netw 20, 1777–1793 (2014). https://doi.org/10.1007/s11276-014-0707-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0707-0

Keywords

Navigation