Skip to main content
Log in

A utility-based resource allocation scheme for IEEE 802.11 WLANs via a machine-learning approach

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The problem of allocating resources in IEEE 802.11 wireless local area networks (WLAN) is challenging due to limited bandwidth, time-varying channel conditions, and especially the distributed channel-access manner. In this paper we propose an intelligent resource allocation scheme that dynamically adjusts medium-access-control (MAC) parameters to tune channel-access opportunities and maximize the total utility. “Intelligent” refers to the capability of our approach to regulate each 802.11 node’s parameters automatically according to the changes of surrounding situations, e.g. channel conditions and number of nodes. Our intelligent allocation scheme uses neural networks to on-line learn the nonlinear function between the adopted MAC parameters and allocated throughput. Based on the learned knowledge, MAC parameters can therefore be dynamically adjusted toward the desired throughput allocation and consequently the maximal WLAN utility. Simulations results demonstrate the effectiveness of our allocation scheme in maximizing the system utility in a varying 802.11 WLAN environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. F. P. Kelly. (1997). Charging and rate control for elastic traffic. European Transaction on Telecommunication, January 1997.

  2. Kelly, F. P., Maulloo, A. K., & Tan, D. H. K. (1998). The rate control for communication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 409, 237–252.

    Article  Google Scholar 

  3. Song, G., & Li, Y. (2005). Cross-layer optimization for OFDM wireless networks-part I: Theoretical framework. IEEE Transaction on Wireless Communications, 4(2), 614–624.

    Article  MathSciNet  Google Scholar 

  4. Song, G., & Li, Y. (2005). Cross-layer optimization for OFDM wireless networks-part II: Algorithm development. IEEE Transaction on Wireless Communications, 4(2), 625–634.

    Article  MathSciNet  Google Scholar 

  5. Song, G., & Li, Y. (2005). Utility-based resource allocation and scheduling in OFDM-based wireless broadband networks. IEEE Communication Magazine, 43(12), 127–134.

    Article  MathSciNet  Google Scholar 

  6. Shah, V., Mandayam, N. B., & Goodman, D. J. (1998). Power control for wireless data based on utility and pricing. In Proceedings of IEEE personal, indoor, mobile radio communications conference, pp. 1427–1432.

  7. Xiao, M., Shroff, N. B., & Chong, E. K. P. (2003). A utility-based power-control scheme in wireless cellular systems. IEEE/ACM Transaction on Networking, 11(2), 210–221.

    Article  Google Scholar 

  8. Song, L., & Mandayam, N. B. (2001). Hierarchical SIR and rate control on the forward link for CDMA data users under delay and error constraints. IEEE Journal on Selected Areas in Communications, 19(10), 1871–1882.

    Article  Google Scholar 

  9. Saraydar, C. U., Mandayam, N. B., & Goodman, D. J. (2001). Pricing and power control in a multicell wireless data network. IEEE Journal on Selected Areas in Communications, 19(10), 1883–1892.

    Article  Google Scholar 

  10. Cao, Y., & Li, V. O. K. (2002). Utility-oriented adaptive QoS and bandwidth allocation in wireless networks. In Proceedings of IEEE ICC 2002, pp. 3071–3075.

  11. Jiang, Z., Ge, Y., & Li, Y. (2005). Max-utility wireless resource management for best-effort traffic. IEEE Transaction on Wireless Communications, 4(1), 100–111.

    Article  Google Scholar 

  12. Bianchi, G., Campbell, A. T., & Liao, R. R.-F. (1998). On utility-fair adaptive services in wireless networks. In Proceedings of 6th international workshop quality of service, pp 256–267.

  13. Bianchi, G., & Campbell, A. T. (2000). A programmable MAC framework for utility-based adaptive quality of service support. IEEE Journal on Selected Areas in Communication, 18(2), 244–255.

    Article  Google Scholar 

  14. Gao, X., Nandagopal, T., & Bharghavan, V. (2001). Achieving application level fairness through utility-based wireless fair scheduling. In Proceeding of IEEE Globecom 2001, pp. 3257–3261.

  15. Curescu, C., & Nadjm-Tehrani, S. (2005). Time-aware utility-based resource allocation in wireless networks. IEEE Transaction on Parallel and Distributed Systems, 16(7), 624–636.

    Article  Google Scholar 

  16. Kuo, W.-H., & Liao, W. (2007). Utility-based resource allocation in wireless networks. IEEE Transaction on Wireless Communications, 6(10), 3600–3606.

    Article  Google Scholar 

  17. IEEE 802.11a/b, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Standard, IEEE, Aug. 1999.

  18. IEEE 802.11e/D5.0, Draft Supplement to Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications: Medium Access Control (MAC) enhancements for Quality of Service (QoS), June 2003.

  19. Liu, W., Lou, W., Chen, X., & Fang, Y. (2003). A QoS-enabled MAC architecture for prioritized service in IEEE 802.11 WLANs. In Proceeding of IEEE GLOBECOM 2003, pp. 3802–3807.

  20. Tinnirello, I., Bianchi, G., & Scalia, L. (2004). Performance evaluation of differentiated access mechanisms effectiveness in 802.11 networks. In Proceeding of IEEE GLOBECOM 2004, pp. 3007–3011.

  21. van der Schaar, M., & Shankar, N. S. (2005). Cross-layer wireless multimedia transmission: Challenges, principles, and new paradigms. IEEE Wireless Communications, 12(4), 50–58.

    Article  Google Scholar 

  22. Shenker, S. (1995). Fundamental design issues for the future internet. IEEE Journal on Selected Areas in Communication, 13(7), 1176–1188.

    Article  Google Scholar 

  23. Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366.

    Article  Google Scholar 

  24. Shen, S., Chang, C.-J., & Wang, L.-C. (2009). A cellular neural network and utility-based radio resource scheduler for multimedia CDMA communication systems. IEEE Transactions on Wireless Communications, 8(11), 5508–5519.

    Article  Google Scholar 

  25. Bigus, J. P. (1998). Adaptive resource allocation using neural networks, US Patent, 1998.

  26. Walczak, S. (1998). Neural network models for a resource allocation problem. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 2(2), 276–284.

    Article  Google Scholar 

  27. Irie, B., & Miyake, S. (1988). Capabilities of three-layered perceptrons. In Proceedings of the IEEE international conference on neural networks, pp. 641–648.

  28. Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control. Signals and Systems, 2, 303–314.

    Article  MathSciNet  MATH  Google Scholar 

  29. Funahashi, K. (1989). On the approximate realization of continuous mappings by neural networks. Neural Networks, 2, 183–192.

    Article  Google Scholar 

  30. Haykin, S. (1999). Neural networks: A comprehensive foundation (2nd ed.). Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  31. van der Schaar, M., Krishnamachari, S., Choi, S., & Xu, X. (2003). Adaptive cross-layer protection strategies for robust scalable video transmission over 802.11 WLANs. IEEE Journal on Selected Areas in Communications, 21(10), 1752–1763.

    Article  Google Scholar 

  32. Rappaport, T. S. (2002). Wireless communications principles and practice. Upper Saddle River: Prentice Hall PTR.

    Google Scholar 

  33. Sadeghi, B., Kanodia, V., Sabharwal, A., & Knightly, E. (2002). Opportunistic media access for multirate ad hoc Networks. In Proceeding of ACM MOBICOM, pp. 24–35.

  34. Yin, J., Wang, X., & Agrawal, D. P. (2004). Optimal packet size in error-prone channel for IEEE 802.11 distributed coordination function. In Proceedings of IEEE WCNC 2004, pp. 1654–1659.

  35. Schurmann, F., Hohmann, S., Schemmel, J., & Meier, K. (2002). Towards an artificial neural network framework. In Proceeding of the NASA/DOD conference on evolvable hardware, pp 266–273.

  36. Ahn, C. W., & Ramakrishna, R. S. (2004). Qos provisioning dynamic connection-admission control for multimedia wireless networks using a hopfield neural network. IEEE Transactions on Vehicular Technology, 53(1), 106–117.

    Article  Google Scholar 

  37. Cun, Y. L., Denker, J. S., & Solla, S. A. (1990). Optimal brain damage. In D. S. Touretzky (Ed.), Advances in neural information processing systems, vol. 2, pp 598–605.

  38. IEEE 802.11n, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Enhancements for Higher Throughput, 2009.

  39. Bellalta, B., Barcelo, J., Staehle, D., Vinel, A., & Oliver, M. (2012). On the performance of packet aggregation in IEEE 802.11ac MU-MIMO WLANs. IEEE Communications Letters, 16(10), 1588–1591.

    Article  Google Scholar 

  40. Wang, C., & Lin, T. (2008). On throughput performance of channel inequality in IEEE 802.11 WLANs. IEEE Transactions on Wireless Communications, 7(11), 4425–4431.

    Article  Google Scholar 

  41. Modiano, E. (1999). An adaptive algorithm for optimizing the packet size used in wireless ARQ protocols. Wireless Networks, 5(4), 279–286.

    Article  Google Scholar 

  42. Qiao, D., Choi, S., & Shin, K. G. (2002). Goodput analysis and link adaptation for IEEE 802.11a wireless LANs. IEEE Transaction on Mobile Computing, 1(4), 278–292.

    Article  Google Scholar 

  43. Zhu, H., Li, M., Chlamtac, I., & Prabhakaran, B. (2004). A survey of quality of service in IEEE 802.11 networks. IEEE Wireless Communications, 11(4), 6–14.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Taiwan National Science Council under Grants 101-2221-E-003-016 and 102-2221-E-003-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiapin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Kuo, WH. A utility-based resource allocation scheme for IEEE 802.11 WLANs via a machine-learning approach. Wireless Netw 20, 1743–1758 (2014). https://doi.org/10.1007/s11276-014-0708-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0708-z

Keywords

Navigation