Skip to main content
Log in

Performance analysis of greedy fast-shift block acknowledgement for high-throughput WLANs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The techniques of frame aggregation and block acknowledgement (ACK) are utilized in the IEEE 802.11n standard for achieving high throughput performance from the medium access control perspective. Conventional greedy scheme for block ACK adopts the transmitter-defined starting sequence number (SSN) to construct the ACK window for recognizing the correctness of data packets. However, there exists correctly received packets that lie outside of the ACK window which will unavoidably be retransmitted by adopting the conventional scheme. In this paper, a greedy fast-shift (GFS) block ACK mechanism is proposed to provide the receiver-defined SSN, which can both implicitly acknowledge the correctly received packets before the SSN and explicitly identify the correctness information for the packets after the SSN. In order to evaluate the effectiveness of the GFS scheme, the analytical models for these two mechanisms are proposed based on the window utilization. Compared to the conventional greedy scheme, it is observed from the simulation results that the proposed GFS method can provide better performance owing to its fast-shift behavior on ACK window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. IEEE 802.11 WG. (2003). IEEE Std 802.11a-1999(R2003): Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: High-speed physical layer in the 5 GHz Band, IEEE Standards Association Std.

  2. IEEE 802.11 WG (2003). IEEE Std 802.11b-1999(R2003): Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Higher-speed physical layer extension in the 2.4 GHz Band, IEEE Standards Association Std.

  3. IEEE 802.11 WG (2003). IEEE Std 802.11g-2003: Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Amendment 4: Further higher data rate extension in the 2.4 GHz Band, IEEE Standards Association Std.

  4. IEEE 802.11 WG (2005). IEEE Std 802.11e-2005: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements, IEEE Standards Association Std.

  5. IEEE 802.11 WG (2009). IEEE 802.11n-2009: Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Amendment 5: Enhancements for higher throughput, IEEE Standards Association Std.

  6. Heiskala, J., & Terry, J. (2001). OFDM wireless LANs: A theoretical and practical guide.Indianapolis, IN: Sams.

    Google Scholar 

  7. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  8. Xiao, Y., & Rosdahl, J. (2002). Throughput and delay limits of IEEE 802.11. IEEE Communications Letters, 6(8), 355–357.

    Article  Google Scholar 

  9. Yang, X. (2004). Packing mechanisms for the IEEE 802.11n wireless LANs. In Proceedings of IEEE global telecommunications conference (GLOBECOM) (pp. 3275–3279).

  10. Lu, Y., Zhang, C., Lu, J., & Lin, X. (2007). A MAC queue aggregation scheme for VoIP transmission in WLAN. In Proceedings of IEEE wireless communications and networking conference (WCNC) (pp. 2121–2125).

  11. Wu, Y. (2006). Multilevel modulation based differentiated data aggregation for wireless LANs. In Proceedings of IEEE Region 10 Conference (TENCON) (pp. 1–4).

  12. Ghazisaidi, N., & Maier, M. (2010). Advanced aggregation techniques for integrated next-generation WLAN and EPON networks. In: Proceedings of IEEE consumer communications and networking conference (CCNC) (pp. 1–5).

  13. Nguyen, S. H., Qazi, I. A., Andrew, L. L., & Vu, H. L. (2013). Rate equilibria in WLANs with block ACKs. In Proceedings of IEEE LCN.

  14. Hajlaoui, N., Jabri, I., & Jemaa, M. B. (2013). Analytical study of frame aggregation in error-prone channels. In IEEE wireless communications and mobile computing conference (IWCMC) (pp. 237–242).

  15. Chou, K.-H., & Lin, W. (2013). Performance analysis of packet aggregation for IEEE 802.11 PCF MAC-based wireless networks. IEEE Transactions on Wireless Communication, 12(4), 1441–1447.

    Article  MathSciNet  Google Scholar 

  16. Abichar, Z., & Chang, J. (2013). Group-based medium access control for IEEE 802.11n Wireless LANs. IEEE Transactions on Mobile Computing, 12(2), 304–317.

    Article  Google Scholar 

  17. Lin, J.-S., Feng, K.-T., Huang, Y.-Z., & Wang, L.-C. (2013). Novel design and analysis of aggregated ARQ protocols for IEEE 802.11n networks. IEEE Transactions on Mobile Computing, 12(3), 556–570.

    Article  Google Scholar 

  18. Feng, K.-T., Huang, Y.-Z., & Lin, J.-S. (2011). Design of MAC-defined aggregated ARQ schemes for IEEE 802.11n networks. Wireless Networks, 17(3), 685–699.

    Article  Google Scholar 

  19. Kramer, G. (2005). Ethernet passive optical networks. New York: Mcgraw-Hill.

    Google Scholar 

  20. Ghazisaidi, N., Maier, M., & Assi, C. M. (2009). Fiber-wireless (FiWi) sccess networks: A survey. IEEE Communications Magazine, 47(2), 160–167.

    Article  Google Scholar 

  21. Ginzburg, B., & Kesselman, A. (2007). Performance analysis of A-MPDU and A-MSDU aggregation in IEEE 802.11n. In Proceedings of IEEE Sarnoff Symposium (pp. 1–5).

  22. Skordoulis, D., Ni, Q., Chen, H. H., Stephens, A. P., Liu, C., & Jamalipour, A. (2008). IEEE 802.11n MAC frame aggregation mechanisms for next-generation High-throughput WLANs. IEEE Wireless Communications Magazine, 15(1), 40–47.

    Article  Google Scholar 

  23. Kuo, Y. W. (2007). Throughput analysis for wireless LAN with frame aggregation under mixed traffic. In Proceedings of IEEE region 10 conference (TENCON) (pp. 1–4).

  24. Kim, B. S., Hwang, H. Y., & Sung, D .K. (2008). Effect of frame aggregation on the throughput performance of IEEE 802.11n. In Proceedings of IEEE wireless communications and networking conference (WCNC) (pp. 1740–1744).

  25. Lin, Y., & Wong, V. W. S. (2006). Frame aggregation and optimal frame size adaptation for IEEE 802.11n WLANs. In Proc. IEEE global telecommunications conference (GLOBECOM) (pp. 1–6).

  26. Nagai, Y., Fujimura, A., Shirokura, Y., Isota, Y., Ishizu, F., Nakase, H., et al. (2006). 324Mbps WLAN equipment with MAC frame aggregation, In Proceedings IEEE international symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 1–5).

  27. Kim, Y., Choi, S., Jang, K., & Hwang, H. (2004). Throughput enhancement of IEEE 802.11 WLAN via frame aggregation. In Proceedings of IEEE vehicular technology conference (VTC). (pp. 3030–3034).

  28. Forouzan, B. A. (2006). Data communications and networking. New York: McGraw-Hill.

    Google Scholar 

  29. Nakajima, T., Nabetani, T., Utsunomiya, Y., Adachi, T., & Takagi, M. (2007). A simple and efficient selective repeat scheme for high throughput WLAN, IEEE802.11n. In Proceedings of IEEE vehicular technology conference (VTC) (pp. 1302–1306).

  30. Nakajima, T., Utsunomiya, Y., Nishibayashi, Y., Tandai, T., Adachi, T., & Takagi, M. (2005). Compressed block ACK, an efficient selective repeat mechanism for IEEE802.11n. In Proceedings of IEEE international symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 1479–1483).

  31. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  32. Heidemann, J., Bulusu, N., Elson, J., Intanagonwiwak, C., Lan, K., Xu, Y., Ye, W., Estrin, D., & Govindan, R. (2001). Effects of detail in wireless network simulation. In Proceedings of SCS multiconference on distributed simulation (pp. 3–11).

Download references

Acknowledgments

This work was in part funded by the Aiming for the Top University and Elite Research Center Development Plan, the Technological University Paradigms, NSC 102-2221-E-027-004, NSC 102-2221-E-009-018-MY3, the MediaTek research center at National Chiao Tung University, and the Telecommunication Laboratories at Chunghwa Telecom Co. Ltd, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Ten Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WJ., Huang, CH., Feng, KT. et al. Performance analysis of greedy fast-shift block acknowledgement for high-throughput WLANs. Wireless Netw 20, 2503–2519 (2014). https://doi.org/10.1007/s11276-014-0752-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0752-8

Keywords

Navigation