Skip to main content
Log in

An on-demanded data broadcasting scheduling considering the data item size

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Compared with conventional data broadcasting, on-demand data broadcasting is adaptive and real-time, which can better reflect the actual needs of mobile users. Current researches do not consider the attribute of data item size, and the constantly changing characteristics of data item size in on-demand data broadcasting is non-ignorable. This paper introduces the split strategies and backpacks theories into on-demand data broadcasting scheduling to deal with the inconsistencies of data item size, and proposes two scheduling models under different split strategies: (1) equal split scheduling model ES-LxRxW, which proposes the equal splitting strategy (ES) and a deadline adjust strategy. (2) Unequal split scheduling model US-LxRxW, which proposes the unequal split strategy (US) and two effective scheduling algorithms priority first (PF) and propriety and bandwidth first (PxBF). Extensive experiments shows that ES-LxRxW and US-LxRxW can both improve bandwidth utilization and dynamically adjust to the real-time situation of data item size, which takes into account data item size, bandwidth, cycle and scheduling priority of data item. The two proposed scheduling models could reach or outperform the other state-of-the-art scheduling algorithms without considering data item size in the performance of request drop ratio. US-LxRxW can also better reflect the real-time changes of data items than ES-LxRxW, and the proposed PF and PxBF algorithms can effectively improve the bandwidth utilization and reduce the split times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Park, K., & Valduriez, P. (2013). A Hierarchical Grid Index (HGI), spatial queries in wireless data broadcasting. Distributed and Parallel Databases, 31(3), 413–446.

  2. Chen, J., Lee, V., Liu, K., Ali, G. M. N., & Chan, E. (2013). Efficient processing of requests with network coding in on-demand data broadcast environments. Information Sciences, 232, 27–43.

  3. Wang, Y., Xu, C., Gu, Y., Chen, M., & Yu, G. (2013). Spatial query processing in road networks for wireless data broadcast. Wireless Networks, 19(4), 477–494.

    Article  Google Scholar 

  4. Liaskos, C., Papadimitriou, G., Nicopolitidis, P., & Pomportsis, A. (2012). Parallel data broadcasting for optimal client service ratio. Communications Letters, IEEE, 16(11), 1741–1743.

  5. Waluyo, A. B., Taniar, D., Rahayu, W., Aikebaier, A., Takizawa, M., & Srinivasan, B. (2012). Trustworthy-based efficient data broadcast model for P2P interaction in resource-constrained wireless environments. Journal of Computer and System Sciences, 78(6), 1716–1736.

    Article  MathSciNet  Google Scholar 

  6. Ros, F. J., Ruiz, P. M., & Stojmenovic, I. (2012). Acknowledgment-based broadcast protocol for reliable and efficient data dissemination in vehicular ad hoc networks. IEEE Transactions on Mobile Computing, 11(1), 33–46.

    Article  Google Scholar 

  7. Liaskos, C., Xeros, A., Papadimitriou, G. I., Lestas, M., & Pitsillides, A. (2012). Balancing wireless data broadcasting and information hovering for efficient information dissemination. IEEE Transactions on Broadcasting, 58(1), 66–76.

    Article  Google Scholar 

  8. Dewri, R., Ray, I., Ray, I., & Whitley, D. (2008, March). Optimizing on-demand data broadcast scheduling in pervasive environments. In Proceedings of the 11th international conference on extending database technology: Advances in database technology (pp. 559–569). ACM.

  9. Zhan, C., Lee, V. C., Wang, J., & Xu, Y. (2011). Coding-based data broadcast scheduling in on-demand broadcast. IEEE Transactions on Wireless Communications, 10(11), 3774–3783.

    Article  MATH  Google Scholar 

  10. Waluyo, A. B., Rahayu, W., Taniar, D., & Scrinivasan, B. (2011). A novel structure and access mechanism for mobile data broadcast in digital ecosystems. IEEE Transactions on Industrial Electronics, 58(6), 2173–2182.

    Article  Google Scholar 

  11. Nicopolitidis, P., Christidis, K., Papadimitriou, G. I., Sarigiannidis, P. G., & Pomportsis, A. S. (2011). Performance evaluation of acoustic underwater data broadcasting exploiting the bandwidth-distance relationship. Mobile Information Systems, 7(4), 285–298.

    Google Scholar 

  12. Wu, B. S., Hsieh, C. C., & Chen, Y. W. (2011). A reverse-order scheduling scheme for broadcasting continuous multimedia data over a single channel. IEEE Transactions on Broadcasting, 57(3), 721–728.

    Article  Google Scholar 

  13. Hu, C. L. (2011). Adaptive scheduling for on-demand time-critical information dissemination over data broadcast channel. Journal of Information Science and Engineering, 27(6), 1959–1983.

    MathSciNet  Google Scholar 

  14. Shin, H. Y. (2012). Exploiting skewed access and energy-efficient algorithm to improve the performance of wireless data broadcasting. Computer Networks, 56(4), 1167–1182.

    Article  Google Scholar 

  15. Dewri, R., Ray, I., Ray, I., & Whitley, D. (2012). Utility driven optimization of real time data broadcast schedules. Applied Soft Computing, 12(7), 1832–1846.

    Article  Google Scholar 

  16. Gandhi, R., Kim, Y. A., Lee, S., Ryu, J., & Wan, P. J. (2012). Approximation algorithms for data broadcast in wireless networks. IEEE Transactions on Mobile Computing, 11(7), 1237–1248.

    Article  Google Scholar 

  17. Yi, S. Y., & Shin, H. (2012). A hybrid scheduling scheme for data broadcast over a single channel in mobile environments. Journal of Intelligent Manufacturing, 23(4), 1259–1269.

    Article  Google Scholar 

  18. Wang, H., Xiao, Y., & Shu, L. (2012). Scheduling periodic continuous queries in real-time data broadcast environments. IEEE Transactions on Computers, 61(9), 1325–1340.

    Article  MathSciNet  Google Scholar 

  19. Im, S., & Choi, J. (2012). Quick data access on multiple channels in non-flat wireless spatial data broadcasting. IEICE Transactions, 95(9), 3042–3046.

    Article  Google Scholar 

  20. Yu, H. F. (2013). Single-channel data broadcasting under small waiting latency. Journal of Applied Mathematics, 2013(1), 1–8.

  21. Huang, J. L. (2008). AIDOA: An adaptive and energy-conserving indexing method for on-demand data broadcasting systems. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 38(2), 331–345.

    Article  Google Scholar 

  22. Chung, Y. C., Chen, C. C., & Lee, C. (2006). Design and performance evaluation of broadcast algorithms for time-constrained data retrieval. Knowledge and Data Engineering, IEEE Transactions on, 18(11), 1526–1543.

    Article  Google Scholar 

  23. Wu, X., & Lee, V. (2005). Wireless real-time on-demand data broadcast scheduling with dual deadlines. Journal of Parallel and Distributed Computing, 65(6), 714–728.

    Article  MathSciNet  Google Scholar 

  24. Hu, W., Fan, C., Luo, J., Peng, C., & Du, B. (2013). An on-demand data broadcasting scheduling algorithm based on dynamic index strategy. Wireless Communications & Mobile Computing, 00, 1–18.

    Google Scholar 

  25. Xuan, P., Sen, S., Gonzalez, O., Fernandez, J., & Ramamritham, K. (1997, June). Broadcast on demand: Efficient and timely dissemination of data in mobile environments. In Real-time technology and applications symposium, 1997. Proceedings, Third IEEE (pp. 38–48). IEEE.

  26. Fang, Q., Vrbsky, S., Dang, Y., & Ni, W. (2004). A pull-based broadcast algorithm that considers timing constraints. In: Proceedings of the 2004 international conference on parallel processing workshops, pp. 46–53.

  27. Ng, J., Lee, V., & Hui, C. (2008). Client-side caching strategies and on-demand broadcast algorithms for real-time information dispatch systems. IEEE Transactions on Broadcasting, 54(1), 24–35.

    Article  Google Scholar 

  28. Dykeman, H., & Wong, J. (1988). A performance study of broadcast information delivery systems. In: INFOCOM’88. Networks: Evolution or revolution? Proceedings. Seventh annual joint conference of the IEEE computer and communcations societies, pp. 739–745.

  29. Chen, J., Lee, V., & Liu, K. (2010). On the performance of real-time multi-item request scheduling in data broadcast environments. Journal of Systems and Software, 83(8), 1337–1345.

    Article  Google Scholar 

  30. Kalyanasundaram, B., Velauthapillai, M. (2003). On-demand broadcasting under deadline. In: Proceedings of the 11th annual European symposium on algorithms (Vol. 2832, pp. 313–324).

  31. Lee, V. C. S., & Liu, K. (2010). Scheduling time-critical requests for multiple data objects in on-demand broadcast. Concurrency and Computation: Practice and Experience, 22(15), 2124–2143.

    Google Scholar 

  32. Fang, Q., Vrbsky, S. V., Lei, M., & Borie, R. (2009). Scheduling on-demand broadcast with timing constraints. Journal of Parallel and Distributed Computing, 69(8), 737–747.

    Article  Google Scholar 

  33. Wang, H., Xiao, Y., & Shu, L. (2012). Scheduling periodic continuous queries in real-time data broadcast environments. IEEE Transactions on Computers, 61(9), 1325–1340.

    Article  MathSciNet  Google Scholar 

  34. Lv, J., Lee, V., Li, M., & Chen, E. (2012). Profit-based scheduling and channel allocation for multi-item requests in real-time on-demand data broadcast systems. Data & Knowledge Engineering, 73, 23–42.

    Article  Google Scholar 

  35. Liaskos, C., Xeros, A., Papadimitriou, G. I., Lestas, M., & Pitsillides, A. (2012). Broadcast scheduling with multiple concurrent costs. IEEE Transactions on Broadcasting, 58(2), 178–186.

    Article  Google Scholar 

  36. Ma, X., & Yang, L. (2013). A real-time scheduling strategy in on-demand broadcasting. In: 2012 international conference on graphic and image processing. International Society for Optics and Photonics. 87687R.

  37. Xu, J., Tang, X., & Lee, W. C. (2006). Time-critical on-demand data broadcast: algorithms, analysis and performance evaluation. IEEE Transactions on Parallel and Distributed Systems, 17(1), 3–14.

    Article  Google Scholar 

  38. Aksoy, D., & Franklin, M. (1999). RxW: a scheduling approach for large scale on-demand data broadcast. IEEE/ACM Transactions on Networking, 7(6), 846–860.

    Article  Google Scholar 

  39. Wu, Y., & Cao, G. (2001). Stretch-optimal scheduling for on-demand data broadcasts. In: Proceedings of the IEEE international conference on computer communications and networks (ICCCN’01) (pp. 500–504).

  40. Wu, X., & Lee, V. C. S. (2005). Wireless real-time on-demand data broadcast scheduling with dual deadlines. Journal of Parallel and Distributed Computing, 65(6), 714–728.

    Article  MathSciNet  Google Scholar 

  41. Lee, V. C., Wu, X., & Ng, J. K. Y. (2006). Scheduling real-time requests in on-demand data broadcast environments. Real-Time Systems, 34(2), 83–99.

    Article  MATH  Google Scholar 

  42. World Cup 98 Web Site Access Logs (1998). http://ita.ee.lbl.gov/html/contrib/WorldCup.html.

  43. Fang, Q., Vrbsky, S., Dang, Y., & Ni, W. A pull-based broadcast algorithm that considers timing constraints. In Proceedings of the 2004 international conference on parallel processing workshops, Montreal, QC, Canada (pp. 46–53).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Xia, C., Du, B. et al. An on-demanded data broadcasting scheduling considering the data item size. Wireless Netw 21, 35–56 (2015). https://doi.org/10.1007/s11276-014-0768-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0768-0

Keywords

Navigation