Skip to main content
Log in

Compact dualband rectangular microstrip patch antenna for 2.4/5.12-GHz wireless applications

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

A dual-band antenna is proposed for WLAN and WiMAX frequency bands. Two resonance frequencies are found to be 2.45 and 5.125 GHz and −10 dB bandwidth of lower and upper resonance frequencies are 4.13 and 8.82 % respectively. It is observed that frequency ratio is more sensitive with the dimensions of L-shaped slot. The frequency ratio of the antenna for a given dimension of L-slot is found to be 2.092 and gain of the antenna is 3.9 dBi for lower resonance whereas 6 dBi at upper resonance. The theoretical results are compared with the reported experimental result as well as simulated results obtained from IE3D simulation software which are in close agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bhartia, P., Rao, K. V. S., & Tomar, R. S. (1991). Millimeter-wave microstrip and printed circuit antennas. Norwood, MA: Artech House.

    Google Scholar 

  2. Pozar, D. M., & Schaubert, D. H. (Eds.). (1995). Microstrip antennas, the analysis and design of microstrip antennas and arrays. New York, NY: IEEE Press.

    Google Scholar 

  3. Gao, S., & Zhong, S. S. (1999). Analysis and design of dual-polarized microstrip arrays. International Journal of RF and Microwave CAE, 9, 42–48.

    Article  Google Scholar 

  4. Long, S. A., & Waton, M. D. (1979). A dual-frequency stacked circular disc antenna. IEEE Transactions on Antennas and Propagation, 27, 281–285.

    Article  Google Scholar 

  5. Dahele, J. S., Lee, K. F., & Wong, D. P. (1987). Dual-frequency stacked annular microstrip antenna. IEEE Transactions on Antennas and Propagation, 35, 1281–1285.

    Article  Google Scholar 

  6. Croq, F., & Pozar, D. M. (1992). Multifrequency operation of microstrip antennas using aperture coupled parallel resonators. IEEE Transactions on Antennas and Propagation, 40, 1367–1374.

    Article  Google Scholar 

  7. Richards, W. F., Davidson, S. E., & Long, S. A. (1985). Dual-band reactively loaded microstrip antenna. IEEE Transactions on Antennas and Propagation, 33, 556–560.

    Article  Google Scholar 

  8. Waterhouse, R. B., & Shuley, N. V. (1992). Dual-frequency microstrip rectangular patchespatches. Electronics Letters, 28, 606–607.

    Article  Google Scholar 

  9. Mandal, A., Zafar, H., Das, S., & Vasilakos, A. V. (2012). A modified differential evolution algorithm for shaped beam linear array antenna design. PIER, 125, 439–457.

    Article  Google Scholar 

  10. Wang, B. F., & Lo, Y. T. (1984). Microstrip antenna for dual-frequency operations. IEEE Transactions on Antennas and Propagation, 32, 938–943.

    Article  Google Scholar 

  11. Maci, S., Gentili, G. B., Piazzessi, P., & Salvador, C. (1995). Dual band slot loaded patch antenna. IEE Proceedings H Microwaves Antennas and Propagation, 142, 225.

    Article  Google Scholar 

  12. Mandal, A., Zafar, H., Das, S., & Vasilakos, A. V. (2012). Efficient circular array synthesis with a memetic differential evolution algorithm. PIER B, 38, 367–385.

    Article  Google Scholar 

  13. Bose, D., Biswas, S., Athanasios, V. V., & Laha, S. (2014). Optical filter design using an improved artificial bee colony algorithm. Information Science, 281, 443–461.

    Article  Google Scholar 

  14. Bahal, I. J. (2003). Lumped elements for RF and microwave circuits. Boston: Artech House.

    Google Scholar 

  15. Zhang, X. X., & Yang, F. N. (1998). Study of slit cut on microstrip antenna and its application. Microwave and Optical Technology Letters, 18, 297–300.

    Article  MATH  Google Scholar 

  16. Pandey, V. K., & Vishvakarma, B. R. (2005). Theoretical analysis of linear array antenna of stacked patches. Indian Journal of Radio and Space physics, 3, 125–127.

    Google Scholar 

  17. Meshram, M. K., & Vishvakarma, B. R. (2001). Gap–coupled microstrip array antenna for wide band operation. International Journal of Electronics, 88, 1161–1175.

    Article  Google Scholar 

  18. Balanis, C. A. (1997). Antenna Theory analysis and design (2nd ed.). New York: Wiley.

    Google Scholar 

  19. Wolf, E. A. (1988). Antenna analysis. Narwood MA (USA): Artech house.

    Google Scholar 

  20. Shivnarayan, & Vishvakarma, B. R. (2006). Analysis of inclined slot loaded patch fordualband operation. Microwave and Optical Technology Letters, 48, 2436–2441.

    Article  Google Scholar 

  21. Wang, E., Zheng, J., & Liu, Y. (2009). Anovel dualband patcha antenna for WLAN communication. PIER C, 6, 289–291.

    Google Scholar 

  22. Zeland softwere, Inc. (2008) IE3D simulation software, version 14.05. Zeland Software CA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Ansari, J.A., Kamakshi, K. et al. Compact dualband rectangular microstrip patch antenna for 2.4/5.12-GHz wireless applications. Wireless Netw 21, 347–355 (2015). https://doi.org/10.1007/s11276-014-0783-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0783-1

Keywords

Navigation