Skip to main content
Log in

Adaptive message forwarding for avoiding broadcast storm and guaranteeing delay in active safe driving VANET

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Active safe driving has been extensively studied to avoid vehicle accidents or traffic jam by using the inter-vehicle communications (IVC) in Vehicular Adhoc NETworks and Intelligent Transport Systems (ITSs). In IVC, the shared emergency message certainly brings several advantages: achieving active safe driving, avoiding vehicle accidents, avoiding blind-driving in traffic jam, balancing vehicle traffic loads, etc. However, the shared (emergency) message always forwarded through broadcasting that suffers from broadcast storm and flooding of messages, and then yields a long forwarding delay and degrades the synchronization interval of the application of adaptive cruise control. Thus, to guarantee real-time forwarding of emergency messages (EMs) needs to be addressed for successfully achieving an efficient active safe driving in ITS. This paper thus proposes the Adaptive Forwarding message and Cooperative Safe driving (namely AFCS) for achieving active safe driving mechanism. AFCS avoids flooding the broadcast-type Ems, and then guarantees QoS transmissions of EMs and the real-time driving video information sharing among vehicles. Furthermore, we model an analytical model to analyze several important parameters: packet forwarding delay, packet connectivity probability, number of forwarded messages, etc. Additionally, the proposed approach is applied to cooperate with the cooperative-based ACC to reduce the butterfly effect when vehicles suddenly brake. Numerical results demonstrate that AFCS outperforms the compared approaches in transmission range, connectivity probability, total number of forwarding messages, number of hop-counts, the end-to-end delay, and the butterfly effect. The analysis result is close to the simulation result, and thus justifies the claims of the analytical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Wan, P.-J., Yi, C.-W., & Wang, L. (2010). Asymptotic critical transmission radius for k-connectivity in wireless Ad hoc networks. IEEE Transactions on Information Theory, 56(6), 2867–2874.

    Article  MathSciNet  Google Scholar 

  2. Zhuang, Y., Pan, J., Luo, Y., & Cai, L. (2011). Time and location-critical emergency message dissemination for vehicular ad-hoc networks. IEEE Journal on Selected Areas in Communications, 29(1), 187–196.

    Article  Google Scholar 

  3. Artimy, M. (2007). Local density estimation and dynamic transmission-range assignment in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 8(3), 400–412.

    Article  Google Scholar 

  4. M. M. Artimy, W. Robertson and W. J. Phillips, (2006) “Minimum transmission range in vehicular ad hoc networks over uninterrupted highways,” Intelligent Transportation Systems Conference, pp. 1400–1405, October.

  5. Desjardins, C., & Chaib-draa, B. (2011). Cooperative adaptive cruise control : a reinforcement learning approach. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1248–1260.

    Article  Google Scholar 

  6. Somda, F. H., & Cormerais, H. (2011). Auto-adaptive and string stable strategy for intelligent cruise control. IET Intelligent Transport Systems, 5(3), 168–174.

    Article  Google Scholar 

  7. Fallah, Y. P., Huang, C.-L., Sengupta, R., & Krishnan, H. (2011). Analysis of information dissemination in vehicular ad-hoc networks with application to cooperative vehicle safety systems. IEEE Transactions on Vehicular Technology, 60(1), 233–247.

    Article  Google Scholar 

  8. Wu, H., Fujimoto, R. M., Riley, G. F., & Hunter, M. (2009). Spatial propagation of information in vehicular networks. IEEE Transctions on Vehicular Technology, 58(1), 420–431.

    Article  Google Scholar 

  9. Zhao, J., & Cao, G. (2008). VADD: vehicle-assisted data delivery in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 57(3), 1910–1922.

    Article  MathSciNet  Google Scholar 

  10. Zhang, Z., Mao, G., & Anderson, B. D. O. (2011). On the information propagation process in mobile vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 60(5), 2314–2325.

    Article  Google Scholar 

  11. Jeong, J., Guo, S., Gu, Y., He, T., & Du, D. H. C. (2011). Trajectory-based data forwarding for light-traffic vehicular ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 22(5), 743–757.

    Article  Google Scholar 

  12. Zhang, W., Chen, Y., Yang, Y., Wang, X., Zhang, Y., Hong, X., et al. (2012). Multi-hop connectivity probability in infrastructure-based vehicular networks. IEEE Journal on Selected Areas in Communications, 30(4), 740–747.

    Article  Google Scholar 

  13. Ho, I. W., Leung, K. K., & Polak, J. W. (2011). Stochastic model and connectivity dynamics for VANETs in signalized road systems. IEEE/ACM Transactions on Networking, 19(1), 195–208.

    Article  Google Scholar 

  14. Ng, S. C., Zhang, W., Zhang, Yu., Yang, Y., & Mao, G. (2011). Analysis of access and connectivity probabilities in vehicular relay networks. IEEE Journal on Selected Areas in Communications, 29(1), 140–150.

    Article  Google Scholar 

  15. Jin, W.-L., & Recker, W. W. (2010). An analytical model of multi-hop connectivity of inter-vehicle communication systems. IEEE Transactions on Wireless Communications, 9(1), 106–112.

    Article  Google Scholar 

  16. Kesting, A., Treiber, M., & Helbing, D. (2010). Connectivity statistics of store-and-forward inter-vehicle communication. IEEE Transactions on Intelligent Transportation Systems, 11(1), 172–181.

    Article  Google Scholar 

  17. Abdrabou, A., & Zhuang, W. (2011). Probabilistic delay control and road side unit placement for vehicular ad hoc networks with disrupted connectivity. IEEE Journal on Selected Areas in Communications, 29(1), 129–139.

    Article  Google Scholar 

  18. Luo, P., Li, M., Li, Da, Huang, H.-Yu., Li, Xu, Shu, W., et al. (2007). performance evaluation of suvnet with real-time traffic data. IEEE Transactions on Vehicular Technology, 56(6), 3381–3396.

    Article  Google Scholar 

  19. Ducourthial, B., Khaled, Y., & Shawky, M. (2007). Conditional transmissions: performance study of a new communication strategy in VANET. IEEE Transactions on Vehicular Technology, 56(6), 3348–3357.

    Article  Google Scholar 

  20. Javanmard, A., & Ashtiani, F. (2009). Analytical evaluation of average delay and maximum stable throughput along a typical two-way street for vehicular ad hoc networks in sparse situations. Computer Communications, 32(16), 1768–1780.

    Article  Google Scholar 

  21. IEEE Draft Standard for Wireless Access in Vehicular Environments—Over-the-Air Electronic Payment Data Exchange Protocol for Intelligent Transportation Systems (ITS), January 2011.

  22. Li, Yuyi, (2012) Cooperative data dissemination in cellular-VANET heterogeneous wireless networks, High Speed Intelligent Communication Forum (HSIC), pp. 1-4, May.

  23. Sukuvaara, T., & Pomalaza-Ráez, C. (2009). Vehicular networking pilot system for vehicle-to-infrastructure and vehicle-to-vehicle communications. International Journal of Communication Networks and Information Security (IJCNIS), 1(3), 1–11.

    Google Scholar 

  24. Tsugawa, S. (2006). Trends and issues in safe driver assistance systems. Driver Assistance Systems, 30(2), 6–18.

    Google Scholar 

  25. Y. Bi, H. Zhao & X. S. Shen, (2009) A directional broadcast protocol for emergency message exchange in inter-vehicle communications. In: IEEE International Conference on Communications (ICC), pp. 1–5.

  26. Hunter, J. S. (1986). The exponentially weighted moving average. Journal of Quality Technology, 18(4), 203–210.

    Google Scholar 

  27. A. K. Patel & J. Divecha, (2011). Modified exponentially weighted moving average (EWMA) control chart for an analytical process data. Journal of Chemical Engineering and Materials Science, Vol. 2, pp. 12–20, January.

  28. J. Yun, J.-G. Choi & S. Bahk, (2009). A backward-compatible multiple-round collision avoidance scheme for contention based medium access control. Computer Networks, pp. 1997–2010, March.

  29. Numerical Analysis of IEEE 802.11 Broadcast Scheme in Multihop Wireless Ad Hoc Networks, ICOIN 2005.

  30. Liang, Y.-H., Chang, B.-J., Hsieh, S.-J., & Wang, D.-Y. (2010). Analytical model of QoS-based fast seamless handoff in IEEE 802.16j WiMAX networks. IEEE Transactions on Vehicular Technology, 59(7), 3549–3561.

    Article  Google Scholar 

  31. Yang, Q., Fang, J., Lim, A., Agrawal, P., & Li, S. (2009). ACAR: Adaptive connectivity aware routing for vehicular ad hoc networks in city scenarios (pp. 3–7). Issue: Mobile Network Applications.

    Google Scholar 

  32. Construction and Planning Agency Ministry of the Interior (CPAMI), http://www.cpami.gov.tw/.

  33. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables and stochastic processes (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  34. Levy, H. (1982). Stochastic dominance rules for truncated normal distributions: a note. Journal of Finance, 37(5), 1299–1303.

    Article  Google Scholar 

  35. Ertico - GDF, http://www.ertico.com/en/page_archive/gdf_-_geographic_data_files.htm.

  36. VanetMobiSim, http://vanet.eurecom.fr/.

  37. Youssef, M., Ibrahim, M., Latif, M. A., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: a survey. IEEE Communications Surveys and Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  38. Jiang, T., Wang, H., & Vasilakos, A. V. (2012). QoE-Driven channel allocation schemes for multimedia transmission of priority-based secondary users over cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30(7), 1215–1224.

    Article  Google Scholar 

  39. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  40. Busch, C., Rouge, B., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion+dilation in networks via quality of routing games. IEEE Transactions on Computer, 61(9), 1270–1283.

    Article  Google Scholar 

  41. Cianfrani, A., Eramo, V., Listanti, M., & Polverini, M. (2012). An OSPF-integrated routing strategy for qos-aware energy saving in ip backbone networks. IEEE Transactions on Network and Service Management, 9(3), 254–267.

    Article  Google Scholar 

  42. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. INFOCOM, 2012, 100–108.

    Google Scholar 

  43. Yen, Y.-S., Chao, H.-C., Chang, R.-S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modeling, 53(11–12), 2238–2250.

    Article  Google Scholar 

  44. Zhou, L., Chao, H.-C., & Vasilakos, A. V. (2011). Joint forensics-scheduling strategy for delay-sensitive multimedia applications over heterogeneous networks. IEEE Journal on Selected Areas in Communications, 29(7), 1358–1367.

    Article  Google Scholar 

  45. Spyropoulos, T., Rais, R. N. B., Turletti, T., Obraczka, K., & Vasilakos, A. (2012). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  46. A. Vasilakos, Y. Zhang, and T. V. Spyropoulos, “Delay tolerant networks: Protocols and applications,” CRC Press, 2012.

  47. W. Quan, X. Changqiao, A.V. Vasilakos, G. Jianfeng, Z. Hongke, & L.A. Grieco, 2014. TB2F: Tree-bitmap and bloom-filter for a scalable and efficient name lookup in content-centric networking,” IFIP Networking.

  48. Cheng, X., Wang, C.-X., Laurenson, D. I., & Vasilakos, A. V. (2009). An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels. IEEE Transactions on Wireless Communications, 8(9), 4824–4835.

    Article  Google Scholar 

  49. Cheng, X., Wang, C.-X., Laurenson, D. I., Salous, S., & Vasilakos, A. V. (2011). New deterministic and stochastic simulation models for non-isotropic scattering mobile-to-mobile Rayleigh fading channels. Wireless Communications and Mobile Computing, 11(7), 828–842.

    Article  Google Scholar 

  50. Zhou, L., Zhang, Y., Song, K., Jing, W., & Vasilakos, A. V. (2011). Distributed media services in P2P-based vehicular networks. IEEE Transactions on Vehicular Technology, 60(2), 692–703.

    Article  Google Scholar 

  51. Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Science Council of Taiwan, ROC, under Grants NSC-101-2221-E-224-021-MY2, NSC-101-2221-E-224-022-MY3 and NSC-102-2221-E-252-005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-Jye Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, BJ., Liang, YH. & Huang, YD. Adaptive message forwarding for avoiding broadcast storm and guaranteeing delay in active safe driving VANET. Wireless Netw 21, 739–756 (2015). https://doi.org/10.1007/s11276-014-0816-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0816-9

Keywords

Navigation