Skip to main content
Log in

TCP-CC: cross-layer TCP pacing protocol by contention control on wireless networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Transmission Control Protocol (TCP) performs poorly over wireless networks. Some research indicates that the TCP congestion control mechanism may cause burstiness in the traffic flow. Numerous TCP segments are delivered simultaneously, while an acknowledgement of a retransmission is successfully received. Burstiness leads to a highly contentious network, which markedly increases the probability of packet loss on wireless networks. TCP pacing is a possible solutions for TCP burstiness on multi-hop networks. In this algorithm, TCP segment transmissions are distributed over the whole Round Trip Time. Most pacing protocols attempt to insert a delay interval into the TCP transmissions. However, there is a similar pacing algorithm in IEEE802.11, known as the contention window mechanism. In this paper, we first measure and analyze the way that the contention window size affects TCP throughput in different scenarios. We propose a cross-layer TCP pacing protocol by contention control in the MAC layer, called TCP Contention Control (TCP-CC). It adjusts the lower bound of the contention window in order to optimize the overall TCP throughput in both one-hop and multi-hop topology. Finally, comparative simulations are conducted in order to verify the improvements of our protocol on both TCP Reno and TCP Vegas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. (1981). Transmission Control Protocol. IETF RFC Std. 793.

  2. Marfia, G., & Roccetti, M. (2010). TCP at last: reconsidering TCP’s role for wireless entertainment centers at home. IEEE Transactions on Consumer Electronics, 56, 2233–2240.

    Article  Google Scholar 

  3. Fu, Z., Luo, H., Zerfos, P., Lu, S., & Zhang, L. (2005). Mario gerla: The impact of multihop wireless channel on TCP performance. IEEE Transactions on Mobile Computing, 4, 209–221.

    Article  Google Scholar 

  4. Ren, F., & Lin, C. (2011). Modeling and improving TCP performance over cellular link with variable bandwidth. IEEE Transactions on Mobile Computing, 10, 1057–1070.

    Article  Google Scholar 

  5. Shi, K., Shu, Y., Yang, O., Wang, J., & Luo, J. (2011). Improving TCP performance for EAST experimental data in the wireless LANs. IEEE Transactions on Nuclear Science, 58, 1825–1832.

    Article  Google Scholar 

  6. Zhang, X., Zhu, W., Li, N., & Sung, D. (2010). TCP congestion window adaptation through contention detection in ad hoc networks. IEEE Transactions on Vehicular Technology, 59, 4578–4588.

    Article  Google Scholar 

  7. Park, E., Kim, D., Kim, H., & Choi, C. (2008). A cross-layer approach for per-station fairness in TCP over WLANs. IEEE Transactions on Mobile Computing, 59, 898–911.

    Article  Google Scholar 

  8. Luo, C., Yu, F., Ji, H., & Leung, V. (2010). Cross-layer design for TCP performance improvement in cognitive radio networks. IEEE Transactions on Vehicular Technology, 59, 2485–2495.

    Article  Google Scholar 

  9. Chen, D., Ji, H., & Leung, V. (2012). Distributed best-relay selection for improving TCP performance over cognitive radio networks: A cross-layer design approach. IEEE Journal on Selected Areas in Communications, 30, 315–322.

    Article  Google Scholar 

  10. Aggarwal, A., Savage, S., & Anderson, T. (2000). Understanding the performance of TCP pacing. In INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, Vol. 3 (pp. 1157–1165).

  11. ElRakabawy, S., & Lindemann, C. (2011). A practical adaptive pacing scheme for TCP in multihop wireless networks. Networking, IEEE/ACM Transactions on, 19(4), 975–988.

    Article  Google Scholar 

  12. Bhutani, G. (2010). A near-optimal scheme for tcp ack pacing to maintain throughput in wireless networks. In Communication Systems and Networks (COMSNETS), 2010 Second International Conference on (pp. 1–7).

  13. Luo, C.-Y., Komuro, N., Takahashi, K., & Tsuboi, T. (2007). Paced TCP: A dynamic bandwidth probe TCP with pacing in ad hoc networks. In Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium on (pp. 1–5).

  14. Oo, M., & Othman, M. (2009). How good delayed acknowledgement effects rate-based pacing tcp over multi-hop wireless network. In 2009 International Conference on Signal Processing Systems (pp. 464–468).

  15. Fu, Z., Zerfos, P., Luo, H., Lu, S., Zhang, L., & Gerla, M. (2003). The impact of multihop wireless channel on tcp throughput and loss. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, Vol. 3, (pp. 1744–1753).

  16. Matsushita, Y., Matsuda, T., & Yamamoto, M. (2005). Tcp congestion control with ack-pacing for vertical handover. In Wireless Communications and Networking Conference, 2005 IEEE, Vol. 3 (pp. 1497–1502).

  17. Sinha, S. (1998). A tcp tutorial. [Online]. http://ssfnet.org/Exchange/tcp/tcpTutorialNotes.html

  18. Tung, L.-P., Shih, W.-K., Cho, T.-C., Sun, Y., & Chen, M. C. (2007). TCP throughput enhancement over wireless mesh networks. Communications Magazine, IEEE, 45(11), 64–70.

    Article  Google Scholar 

  19. Xiong, N., Vasilakos, A. V., Yang, L. T., Wang, C.-X., Kannan, R., Chang, C.-C., & Pan, Y. (2010). A novel self-tuning feedback controller for active queue management supporting TCP flows. Information Sciences, 180(11), pp. 2249–2263. http://www.sciencedirect.com/science/article/pii/S0020025509005258.

  20. (1997). Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification. IEEE Std. 802.11.

  21. Zhang, X. M., Zhu, W. B., Li, N. N., & Sung, D. K. (2010). TCP congestion window adaptation through contention detection in ad hoc networks. Vehicular Technology, IEEE Transactions on, 59(9), 4578–4588.

    Article  Google Scholar 

  22. Li, X., Kong, P.-Y., & Chua, K.-C. (2007). TCP performance in IEEE 802.11-based ad hoc networks with multiple wireless lossy links. Mobile Computing, IEEE Transactions on, 6(12), 1329–1342.

    Article  Google Scholar 

  23. Anastasopoulos, M., Petraki, D., Kannan, R., & Vasilakos, A. (2010). TCP throughput adaptation in WiMax networks using replicator dynamics. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 40(3), 647–655.

    Article  Google Scholar 

  24. Padhye, J., Firoiu, V., Towsley, D. F., & Kurose, J. F. (2000). Modeling TCP reno performance: A simple model and its empirical validation. IEEE/ACM Transactions on Networking, 8, 133–145.

    Article  Google Scholar 

  25. Xie, H., Pazzi, W., & Boukerche, A. (2012). A novel cross layer tcp optimization protocol over wireless network by markov decision process. In: GLOBECOM12. Global Communication Conference (pp. 5945–5950).

  26. Samios, C. B., & Vernon, M. K. (2003). Modeling the throughput of TCP vegas. SIGMETRICS Perform. Eval. Rev., 31(1), pp. 71–81. [Online]. doi:10.1145/885651.781037.

  27. Fortin-Parisi, S., & Inria, I. (2004). A markov model of TCP throughput, goodput and slow start. Performance Evaluation - Special issue: Distributed systems performance, 58, 89–108.

    Article  Google Scholar 

  28. Xie, H., Boukerche, A., & Almulla, M. (2013). A novel cross layer TCP pacing protocol for multi-hop wireless networks. In WCNC’13, IEEE Wireless Communication and Network Conference.

  29. NS2 (2007). The network simulator ns-2. [Online]. http://www.isi.edu/nsnam/ns/

  30. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. (2014). Routing metrics of cognitive radio networks: A survey. Communications Surveys Tutorials, IEEE, 16(1), 92–109.

    Article  Google Scholar 

  31. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (2011). Delay tolerant networks: Protocols and applications (1st ed.). Boca Raton, FL: CRC Press Inc.

    Google Scholar 

  32. Chen, M., Wan, J., Gonzalez, S., Liao, X., & Leung, V. (2014). A survey of recent developments in home m2m networks. Communications Surveys Tutorials, IEEE, 16(1), 98–114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengheng Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Boukerche, A. TCP-CC: cross-layer TCP pacing protocol by contention control on wireless networks. Wireless Netw 21, 1061–1078 (2015). https://doi.org/10.1007/s11276-014-0833-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0833-8

Keywords

Navigation