Skip to main content
Log in

Exploiting online and offline activity-based metrics for opportunistic forwarding

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Opportunistic networks are challenged wireless networks of handheld mobile devices that use contact opportunities to allow users to communicate without network infrastructure.The highly dynamic nature of these networks requires efficient forwarding mechanisms as disconnections are frequent and an end-to-end communication paradigm is not applicable. Consequently, many existing routing protocols for opportunistic networks make use of social behavior characteristics to perform hop-by-hop routing and select an appropriate relay node. Social network information is commonly extracted from encounters detected between mobile devices. However, Internet added online social interaction techniques which reflect user’s online behavior and are not based on physical meetings. In this paper we present a social-based forwarding strategy for opportunistic networks that exploits both offline and online user’s social network information. By proposing a model of dynamic online social network that uses information extracted from offline and online user behavior, we show that routing centrality metrics combining node centrality extracted from the dynamic online social network and centrality extracted from the social network detected through encounters between mobile devices are able to improve delivery ratio and even reduce the number of message replicas to be injected into the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. http://www.haggleproject.net

  2. https://developers.facebook.com/docs/graph-api

  3. https://dev.twitter.com/docs/api/1.1

References

  1. Bigwood, G., & Henderson, T. (2011). Bootstrapping opportunistic networks using social roles. In IEEE international symposium on a world of wireless, mobile and multimedia networks (WoWMoM), 2011, pp. 1–6. doi:10.1109/WoWMoM.2011.5986139.

  2. Bigwood, G., Rehunathan, D., Bateman, M., Henderson, T., & Bhatti, S. (2008). Exploiting self-reported social networks for routing in ubiquitous computing environments. In Networking and communications, 2008. WIMOB ’08. IEEE international conference on wireless and mobile computing, 2008, pp. 484–489. doi:10.1109/WiMob.86.

  3. Bonacich, P. (1987). Power and centrality: A family of measures. American Journal of Sociology, 92(5), 1170–1182. doi:10.2307/2780000.

    Article  Google Scholar 

  4. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems, 30(1), 107–117.

    Article  Google Scholar 

  5. Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, R., & Fall, K. (2007). Delay-tolerant networking architecture. http://tools.ietf.org/html/rfc4838.

  6. Ciobanu, R. I., Dobre, C., & Cristea, V. (2013). Sprint: social prediction-based opportunistic routing. In IEEE 14th international symposium and workshops on a world of wireless, mobile and multimedia networks (WoWMoM), 2013, pp. 1–7. IEEE.

  7. Costa, P., Mascolo, C., Musolesi, M., & Picco, G. P. (2008). Socially-aware routing for publish-subscribe in delay-tolerant mobile ad hoc networks. IEEE Journal on Selected Areas in Communications, 26(5), 748–760.

    Article  Google Scholar 

  8. Daly, E., & Haahr, M. (2009). Social network analysis for information flow in disconnected delay-tolerant manets. IEEE Transactions on Mobile Computing, 8(5), 606–621. doi:10.1109/TMC.2008.161.

    Article  Google Scholar 

  9. Danon, L., Duch, J., Diaz-Guilera, A., & Arenas, A. (2005). Comparing community structure identification. doi:10.1088/1742-5468/2005/09/p09008.

  10. De Rango, F., Amelio, S., & Fazio, P. (2013). Enhancements of epidemic routing in delay tolerant networks from an energy perspective. In Wireless communications and mobile computing conference (IWCMC), 2013 9th international, pp. 731–735. IEEE.

  11. De Rango, F., & Monteverdi, F. (2012). Social and dynamic graph-based scalable routing protocol in a dtn network. In 2012 International symposium on performance evaluation of computer and telecommunication systems (SPECTS), pp. 1–8. IEEE.

  12. De Rango, F., Socievole, A., Scaglione, A., & Marano, S. (2013). Novel activity-based metrics for efficient forwarding over online and detected social networks. In Wireless communications and mobile computing conference (IWCMC), 2013 9th International, pp. 1–6. IEEE.

  13. Fall, K. (2003). A delay-tolerant network architecture for challenged internets. In Proceedings of the 2003 conference on applications, technologies, architectures, and protocols for computer communications, SIGCOMM ’03, pp. 27–34. ACM, New York, NY. doi:10.1145/863955.863960.

  14. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40, 35–41.

    Article  Google Scholar 

  15. Hui, P., & Crowcroft, J. (2007). Bubble Rap: Forwarding in small world DTNs in ever decreasing circles. Tech. Rep. UCAM-CL-TR-684, University of Cambridge, Computer Laboratory. URL http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-684.pdf.

  16. Keränen, A., Ott, J., & Kärkkäinen, T. (2009). The ONE simulator for DTN protocol evaluation. In Proceedings of the 2nd international conference on simulation tools and techniques, Simutools ’09, pp. 55:1–55:10. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium. doi:10.4108/ICST.SIMUTOOLS2009.5674.

  17. Lindgren, A., Doria, A., & Schelén, O. (2003). Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mobile Computing and Communications Review, 7(3), 19–20.

    Article  Google Scholar 

  18. Liu, S., & Striegel, A. D. (2013). Exploring the potential in practice for opportunistic networks amongst smart mobile devices. In Proceedings of the 19th annual international conference on Mobile computing & networking, pp. 315–326. ACM, New York.

  19. Malandrino, F., Kurant, M., Markopoulou, A., Westphal, C., & Kozat, U. C. (2012). Proactive seeding for information cascades in cellular networks. In Proceedings IEEE on INFOCOM, 2012, pp. 1719–1727. IEEE.

  20. Mashhadi, A., Ben Mokhtar, S., & Capra, L. (2009). Habit: Leveraging human mobility and social network for efficient content dissemination in delay tolerant networks. In IEEE International symposium on a world of wireless, mobile and multimedia networks workshops, 2009. WoWMoM 2009, pp. 1–6. doi:10.1109/WOWMOM.2009.5282467.

  21. Mei, A., Morabito, G., Santi, P., & Stefa, J. (2014). Social-aware stateless routing in pocket switched networks. IEEE Transactions on Parallel and Distributed Systems, 1.

  22. Mtibaa, A., May, M., Diot, C., & Ammar, M. (2010). Peoplerank: Social opportunistic forwarding. In Proceedings IEEE on INFOCOM, 2010 , pp. 1–5. doi:10.1109/INFCOM.2010.5462261.

  23. Newman, M. (2004). Detecting community structure in networks. The European Physical Journal B - Condensed Matter and Complex Systems, 38, 321–330, doi:10.1140/epjb/e2004-00124-y.

  24. Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69, 026,113. doi:10.1103/PhysRevE.69.026113.

  25. Pan, S., Boston, D., & Borcea, C. (2011). Analysis of fusing online and co-presence social networks. In 2011 IEEE international conference on pervasive computing and communications workshops (PERCOM Workshops), pp. 496–501. doi:10.1109/PERCOMW.2011.5766940.

  26. Pelusi, L., Passarella, A., & Conti, M. (2006). Opportunistic networking: Data forwarding in disconnected mobile ad hoc networks. IEEE on Communications Magazine, 44(11), 134–141. doi:10.1109/MCOM.2006.248176.

    Article  Google Scholar 

  27. Pempek, T. A., Yermolayeva, Y. A., & Calvert, S. L. (2009). College students’ social networking experiences on facebook. Journal of Applied Developmental Psychology, 30(3), 227–238.

    Article  Google Scholar 

  28. Pietilainen, A. K., & Diot, C. (2012). CRAWDAD data set thlab/sigcomm2009 (v. 2012–07-15). Downloaded from http://crawdad.cs.dartmouth.edu/thlab/sigcomm2009.

  29. Pietiläinen, A. K., Oliver, E., LeBrun, J., Varghese, G., & Diot, C. (2009). Mobiclique: Middleware for mobile social networking. In Proceedings of the 2nd ACM workshop on online social networks, WOSN ’09, pp. 49–54. ACM, New York, NY. doi:10.1145/1592665.1592678.

  30. Pietilänen, A. K., & Diot, C. (2012). Dissemination in opportunistic social networks: The role of temporal communities. In Proceedings of the thirteenth ACM international symposium on mobile ad hoc networking and computing, MobiHoc ’12, pp. 165–174. ACM, New York, NY. doi: 10.1145/2248371.2248396.

  31. Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(4), 581–603. doi:10.1007/BF02289527.

    Article  MATH  MathSciNet  Google Scholar 

  32. Socievole, A., & De Rango, F. (2012). Evaluation of routing schemes in opportunistic networks considering energy consumption. In 2012 International symposium on performance evaluation of computer and telecommunication systems (SPECTS), pp. 1–7.

  33. Socievole, A., De Rango, F., & Caputo, A. (2014). Wireless contacts, Facebook friendships and interests: Analysis of a multi-layer social network in an academic environment. In Sumbitted to Wireless Days 2014 Conference.

  34. Socievole, A., De Rango, F., & Marano, S. (2013). Face-to-face with facebook friends: Using online friendlists for routing in opportunistic networks. In IEEE 24th international symposium on personal indoor and mobile radio communications (PIMRC), 2013, pp. 2989–2994. IEEE.

  35. Socievole, A., & Marano, S. (2012). Exploring user sociocentric and egocentric behaviors in online and detected social networks. In 2nd Baltic congress on future internet communications (BCFIC), 2012, pp. 140–147. doi:10.1109/BCFIC.2012.6217994.

  36. Socievole, A., Rango, F. D., & Marano, S. (2013). Link prediction in human contact networks using online social ties. In Third international conference on cloud and green computing (CGC), 2013, pp. 305–312. IEEE.

  37. Socievole, A., Yoneki, E., De Rango, F., & Crowcroft, J. (2013). Opportunistic message routing using multi-layer social networks. In Proceedings of the 2nd ACM workshop on high performance mobile opportunistic systems, pp. 39–46. ACM, New York.

  38. Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: An efficient routing scheme for intermittently connected mobile networks. In Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking, WDTN ’05, pp. 252–259. ACM, New York, NY. doi:10.1145/1080139.1080143.

  39. Vahdat, A., & Becker, D. (2000). Epidemic routing for partially-connected ad hoc networks. Technical report, Duke University.

  40. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  41. Xu, K., Li, V., & Chung, J. (2010). Exploring centrality for message forwarding in opportunistic networks. In Wireless communications and networking conference (WCNC), 2010 IEEE, pp. 1–6. doi:10.1109/WCNC.2010.5506553.

  42. Yoneki, E., Hui, P., Chan, S., & Crowcroft, J. (2007). A socio-aware overlay for publish/subscribe communication in delay tolerant networks. In Proceedings of the 10th ACM symposium on modeling, analysis, and simulation of wireless and mobile systems, pp. 225–234. ACM, New York.

Download references

Acknowledgments

This work was partially supported by the European Commission, European Social Fund 2007/2013 and Calabria Region - ARUE Grant. The authors wish to thank the reviewers for their insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Socievole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rango, F.D., Socievole, A. & Marano, S. Exploiting online and offline activity-based metrics for opportunistic forwarding. Wireless Netw 21, 1163–1179 (2015). https://doi.org/10.1007/s11276-014-0842-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0842-7

Keywords

Navigation