Skip to main content
Log in

A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

With the explosive growth of mobile data demand, the fifth generation (5G) mobile network would exploit the enormous amount of spectrum in the millimeter wave (mmWave) bands to greatly increase communication capacity. There are fundamental differences between mmWave communications and existing other communication systems, in terms of high propagation loss, directivity, and sensitivity to blockage. These characteristics of mmWave communications pose several challenges to fully exploit the potential of mmWave communications, including integrated circuits and system design, interference management, spatial reuse, anti-blockage, and dynamics control. To address these challenges, we carry out a survey of existing solutions and standards, and propose design guidelines in architectures and protocols for mmWave communications. We also discuss the potential applications of mmWave communications in the 5G network, including the small cell access, the cellular access, and the wireless backhaul. Finally, we discuss relevant open research issues including the new physical layer technology, software-defined network architecture, measurements of network state information, efficient control mechanisms, and heterogeneous networking, which should be further investigated to facilitate the deployment of mmWave communication systems in the future 5G networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Elkashlan, M., Duong, T. Q., & Chen, H.-H. (2014). Millimeter-wave communications for 5G: Fundamentals: Part I [Guest Editorial]. IEEE Communications Magazine, 52(9), 52–54.

    Article  Google Scholar 

  2. Elkashlan, M., Duong, T. Q., & Chen, H.-H. (2015). Millimeter-wave communications for 5G-Part 2: Applications. IEEE Communications Magazine, 53(1), 166–167.

    Article  Google Scholar 

  3. Doan, C. H., Emami, S., Sobel, D. A., Niknejad, A. M., & Brodersen, R. W. (2004). Design considerations for 60 GHz CMOS radios. IEEE Communications Magazine, 42(12), 132–140.

    Article  Google Scholar 

  4. Gutierrez, F., Agarwal, S., Parrish, K., & Rappaport, T. S. (2009). On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems. IEEE Journal on Selected Areas in Communications, 27(8), 1367–1378.

    Article  Google Scholar 

  5. Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of the IEEE, 99(8), 1390–1436.

    Article  Google Scholar 

  6. ECMC TC48, ECMA standard 387. (2008). High rate 60 GHz PHY, MAC and HDMI PAL.

  7. Ajorloo, H., & Manzuri-Shalmani, M. T. (2013). Modeling beacon period length of the UWB and 60-GHz mmWave WPANs based on ECMA-368 and ECMA-387 standards. IEEE Transactions on Mobile Computing, 12(6), 1201–1213.

    Article  Google Scholar 

  8. IEEE 802.15 WPAN Millimeter Wave Alternative PHY Task Group 3c (TG3c). http://www.ieee802.org/15/pub/TG3c.html.

  9. Draft Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 4: Enhancements for Very High Throughput in the 60 GHz Band, IEEE P802.11ad/D9.0, Oct. 2012.

  10. Khan, F., & Pi, Z. (2011). Millimeter wave mobile broadband (MMB): Unleashing the 3–300 GHz spectrum. In IEEE wireless communications network conference.

  11. Khan, F., & Pi, Z. (2011). An introduction to millimeter wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.

    Article  Google Scholar 

  12. Pietraski, P., Britz, D., Roy, A., Pragada, R., & Charlton, G. (2012). Millimeter wave and terahertz communications: Feasibility and challenges. ZTE Communications, 10(4), 3–12.

    Google Scholar 

  13. Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.

    Article  Google Scholar 

  14. Singh, S., Mudumbai, R., & Madhow, U. (2011). Interference analysis for highly directional 60-GHz mesh networks: The case for rethinking medium access control. IEEE/ACM Transactions on Networking (TON), 19(5), 1513–1527.

    Article  Google Scholar 

  15. Yu, M., Rexford, J., Freedman, M. J., & Wang, J. (2010). Scalable flow-based networking with DIFANE. ACM SIGCOMM Computer Communication Review, 41(4), 351–362.

    Article  Google Scholar 

  16. Zhao, Q., & Li, J. (2006). Rain attenuation in millimeter wave ranges. In Proceedings of the IEEE international Symposium antennas, propagation EM theory (pp. 1–4).

  17. Humpleman, R. J., & Watson, P. A. (1978). Investigation of attenuation by rainfall at 60 GHz. Proceedings of the Institution of Electrical Engineers, 125(2), 85–91.

    Article  Google Scholar 

  18. E-band technology. E-band Communications. [Online]. http://www.e-band.com/index.php?id=86.

  19. Rappaport, T., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.

    Article  Google Scholar 

  20. Violette, E. J., Espeland, R. H., & Hand, G. R. (1985). Millimeter-wave urban and suburban propagation measurements using narrow and wide bandwidth channel probes. NTIA Report (pp. 85–184).

  21. Zwick, T., Beukema, T., & Nam, H. (2005). Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel. IEEE Transactions on Vehicular Technology, 54(4), 1266–1277.

    Article  Google Scholar 

  22. Giannetti, F., Luise, M., & Reggiannini, R. (1999). Mobile and personal communications in 60 GHz band: A survey. Wireless Personal Communications, 10, 207–243.

    Article  Google Scholar 

  23. Smulders, P., & Wagemans, A. (1992). Wideband indoor radio propagation measurements at 58 GHz. Electronics Letters, 28(13), 1270–1272.

    Article  Google Scholar 

  24. Smulders, P. F. M., & Correia, L. M. (1997). Characterisation of propagation in 60 GHz radio channels. Electronics & Communication Engineering Journal, 9(2), 73–80.

    Article  Google Scholar 

  25. Daniels, R., Murdock, J., Rappaport, T. S., & Heath, R. (2010). 60 GHz wireless: Up close and personal. IEEE Microwave Magazine, 11(7), 44–50.

    Article  Google Scholar 

  26. Xu, H., Kukshya, V., & Rappaport, T. S. (2002). Spatial and temporal characteristics of 60 GHz indoor channel. IEEE Journal on Selected Areas in Communications, 20(3), 620–630.

    Article  Google Scholar 

  27. Ben-Dor, E., Rappaport, T. S., Qiao, Y., & Lauffenburger, S. J. (2011). Millimeter wave 60 GHz outdoor and vehicle AOA propagation measurements using a broadband channel sounder. In Proceedings of the IEEE global telecommunications conference (pp. 1–6). Houston, USA.

  28. Geng, S., Kivinen, J., Zhao, X., & Vainikainen, P. (2009). Millimeter-wave propagation channel characterization for short-range wireless communications. IEEE Transactions on Vehicular Technology, 58(1), 3–13.

    Article  Google Scholar 

  29. Anderson, C. R., & Rappaport, T. S. (2004). In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE Transactions on Wireless Communications, 3(3), 922–928.

    Article  Google Scholar 

  30. Daniels, R. C., & Heath, R. W. (2007). 60 GHz wireless communications: Emerging requirements and design recommendations. IEEE Vehicular Technology Magazine, 2(3), 41–50.

    Article  Google Scholar 

  31. Geng, S. Y., Kivinen, J., Zhao, X. W., & Vainikainen, P. (2009). Millimeter-wave propagation channel characterization for short-range wireless communications. IEEE Transactions on Vehicular Technology, 58(1), 3–13.

    Article  Google Scholar 

  32. Manabe, T., et al. (1995). Polarization dependence of multipath propagation and high-speed transmission characteristics of indoor millimeter-wave channel at 60 GHz. IEEE Transactions on Vehicular Technology, 44(2), 268–274.

    Article  Google Scholar 

  33. Manabe, T., et al. (1996). Effects of antenna directivity and polarization on indoor multipath propagation characteristics at 60 GHz. IEEE Journal on Selected Areas in Communications, 14(3), 441–448.

    Article  MathSciNet  Google Scholar 

  34. Singh, S., Ziliotto, F., Madhow, U., Belding, E. M., & Rodwell, M. (2009). Blockage and directivity in 60 GHz wireless personal area networks: From cross-layer model to multi hop MAC design. IEEE Journal on Selected Areas in Communications, 27(8), 1400–1413.

    Article  Google Scholar 

  35. MacCartney, G. R., & Rappaport, T. S. (2014). 73 GHz millimeter wave propagation measurements for outdoor urban mobile and backhaul communications in New York City. In Proceedings of the IEEE ICC 2014.

  36. Sun, S., et al. (2014). Millimeter wave multi-beam antenna combining for 5G cellular link improvement in New York City. In Proceedings of the IEEE ICC 2014.

  37. Azar, Y., Wong, G. N., Wang, K., Mayzus, R., Schulz, J. K., Zhao, H., Gutierrez, F., Hwang, D., & Rappaport, T. S. (2013). 28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City. In Proceedings of the IEEE international conference on communications (pp. 1–6).

  38. Zhao, H., et al. (2013). 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York City. In Proceedings of the IEEE ICC (pp. 5163–5167).

  39. Samimi, M. K. et al. (2013). 28 GHz angle of arrival and angle of departure analysis for outdoor cellular communications using steerable beam antennas in New York City. In Proceedings of the IEEE VTC (pp. 1–6).

  40. Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.

    Article  Google Scholar 

  41. Nguyen, H. C., Thomas, T., MacCartney, G. R. Jr., Rappaport, T. S., Vejlgaard, B., & Mogensen, P. (2014). Evaluation of empirical ray-tracing model for an urban outdoor scenario at 73 GHz E-Band. In 2014 IEEE 80th vehicular technology conference (VTC Fall) (pp. 1–6). Vancouver, BC.

  42. Thomas, T. A., Nguyen, H. C., MacCartney, G. R., Jr., Rappaport, T. S. (2014). 3D mmWave channel model proposal. In 2014 IEEE 80th vehicular technology conference (VTC Fall) (pp. 1–6). Vancouver, BC.

  43. Thomas, T. A., et al. (2013). 3D extension of the 3GPP/ITU channel model. In Proceedings of the IEEE VTC-Spring 2013.

  44. Murdock, J. N., Ben-Dor, E., Qiao, Y., Tamir, J. I., & Rappaport, T. S. (2012). A 38 GHz cellular outage study for an urban campus environment. In Proceedings of the IEEE wireless communication networking conference (pp. 3085–3090).

  45. Rappaport, T. S., Qiao, Y., Tamir, J. I., Murdock, J. N., & Ben-Dor, E. (2012). Cellular broadband millimeter wave propagation and angle of arrival for adaptive beam steering systems (invited paper). In Proceedings of the IEEE radio wireless Symposium (pp. 151–154).

  46. Rappaport, T. S., Ben-Dor, E., Murdock, J. N., & Qiao, Y. (2012). 38 GHz and 60 GHz angle-dependent propagation for cellular and peer-to-peer wireless communications. In Proceedings of the IEEE international conference communication (pp. 4568–4573).

  47. Alalusi, S., & Brodersen, R. (2006). A 60 GHz phased array in CMOS. In Proceedings of the IEEE CICC (pp. 393–396).

  48. Liu, D., & Sirdeshmukh, R. (2008). A patch array antenna for 60 GHz package applications. In Proceedings of the IEEE AP-S Symposium (pp. 1–4).

  49. Wang, J., Lan, Z., Pyo, C., Baykas, T., Sum, C., Rahman, M., et al. (2009). Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. IEEE Journal of Selected Areas in Communications, 27(8), 1390–1399.

    Article  Google Scholar 

  50. Tsang, Y., Poon, A., & Addepalli, S. (2011). Coding the beams: Improving beamforming training in mmwave communication system. In Proceedings of IEEE global telecommunications conference (pp. 1–6). Houston, USA.

  51. Qiao, J., Shen, X., Mark, J. W., & He, Y. (2015). MAC-layer concurrent beamforming protocol for indoor millimeter-wave networks. IEEE Transactions on Vehicular Technology, 64(1), 327–338.

    Article  Google Scholar 

  52. Collonge, S., Zaharia, G., & Zein, G. E. (2004). Influence of human activity on wide-band characteristics of the 60 GHz indoor radio channel. IEEE Transactions on Wireless Communications, 3(6), 2369–2406.

    Article  Google Scholar 

  53. “WirelessHD: WirelessHD specification overview,” 2009.

  54. Wireless Gigabit Alliance. [online]. http://wirelessgigabitalliance.org/.

  55. Yong, S. K., Xia, P., & Valdes-Garcia, A. (2011). 60 GHz technology for Gbps WLAN and WPAN. Chichester: Wiley.

    Google Scholar 

  56. Razavi, B. (1997). Design considerations for direct-conversion receivers. IEEE Transactions on Circuits and Systems II, 44(6), 428–435.

    Article  Google Scholar 

  57. Hong, W., Baek, K.-H., Lee, Y., Kim, Y., & Ko, S.-T. (2014). Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices. IEEE Communications Magazine, 52(9), 63–69.

    Article  Google Scholar 

  58. Hu, S., Xiong, Y.-Z., Wang, L., Li, R., Shi, J., & Lim, T.-G. (2012). Compact high-gain mmWave antenna for TSV-based system-in-package application. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2(5), 841–846.

    Article  Google Scholar 

  59. Liao, S., Wu, P., Shum, K., & Xue, Q. (2015). Differentially fed planar aperture antenna with high gain and wide bandwidth for millimeter wave application. IEEE Transactions on Antennas and Propagation, 63(3), 966–977.

    Article  MathSciNet  Google Scholar 

  60. Zwick, T., Liu, D., & Gaucher, B. P. (2006). Broadband planar superstrate antenna for integrated millimeterwave transceivers. IEEE Transactions on Antennas and Propagation, 54(10), 2790–2796.

    Article  Google Scholar 

  61. Mudumbai, R., Singh, S., & Madhow, U. (2009). Medium access control for 60 GHz outdoor mesh networks with highly directional links. In Proceedings of the IEEE INFOCOM 2009 (Mini Conference) (pp. 2871–2875). Rio de Janeiro, Brazil.

  62. Son, I. K., Mao, S., Gong, M. X., & Li, Y. (2012). On frame-based scheduling for directional mmWave WPANs. In Proceedings of the IEEE INFOCOM (pp. 2149–2157). Orlando, FL.

  63. Qiao, J., Cai, L. X., Shen, X., & Mark, J. (2012). STDMA-based scheduling algorithm for concurrent transmissions in directional millimeter wave networks. In Proceedings of the IEEE ICC (pp. 5221–5225). Ottawa, Canada.

  64. Sum, C., Lan, Z., Funada, R., Wang, J., Baykas, T., Rahman, M. A., et al. (2009). Virtual time-slot allocation scheme for throughput enhancement in a millimeter-wave multi-Gbps WPAN system. IEEE Journal on Selected Areas in Communications, 27(8), 1379–1389.

    Article  Google Scholar 

  65. Kang, H., Ko, G., Kim, I., Oh, J., Song, M., & Choi, J. (2013). Overlapping BSS interference mitigation among WLAN systems. In Proceedings of the IEEE 2013 international conference ICT convergence (pp. 913–917). Jeju, South Korea.

  66. Chen, Q., Peng, X., Yang, J., & Chin, F. (2012). Spatial reuse strategy in mmWave WPANs with directional antennas. In Proceedings of the 2012 IEEE GLOBECOM (pp. 5392–5397). Anaheim, CA.

  67. An, X., & Hekmat, R. (2008). Directional MAC protocol for millimeter wave based wireless personal area networks. In Proceedings of the IEEE VTC-Spring’08 (pp. 1636–1640). Singapore.

  68. Pyo, C. W., Kojima, F., Wang, J., Harada, H., & Kato, S. (2009). MAC enhancement for high speed communications in the 802.15.3c mm Wave WPAN. Springer Wireless Personal Communications, 51(4), 825–841.

    Article  Google Scholar 

  69. Cai, L. X., Cai, L., Shen, X., & Mark, J. W. (2010). REX: A randomized EXclusive region based scheduling scheme for mmWave WPANs with directional antenna. IEEE Transactions on Wireless Communications, 9(1), 113–121.

    Article  Google Scholar 

  70. Sum, C.-S., Lan, Z., Rahman, M. A. et al. (2009). A multi-Gbps millimeter-wave WPAN system based on STDMA with heuristic scheduling. In Proceedings of the IEEE GLOBECOM (pp. 1–6). Honolulu, HI.

  71. Qiao, J., Cai, L. X., Shen, X., et al. (2011). Enabling multi-hop concurrent transmissions in 60 GHz wireless personal area networks. IEEE Transactions on Wireless Communications, 10(11), 3824–3833.

    Article  Google Scholar 

  72. Shihab, E., Cai, L., & Pan, J. (2009). A distributed asynchronous directional-to-directional MAC protocol for wireless ad hoc networks. IEEE Transactions on Vehicular Technology, 58(9), 5124–5134.

    Article  Google Scholar 

  73. Gong, M. X., Stacey, R. J., Akhmetov, D., & Mao, S. (2010). A directional CSMA/CA protocol for mmWave wireless PANs. In Proceedings of the IEEE WCNC’10 (pp. 1–6). Sydney, NSW.

  74. Singh, S., Mudumbai, R., & Madhow, U. (2010). Distributed coordination with deaf neighbors: Efficient medium access for 60 GHz mesh networks. In Proceedings of the IEEE INFOCOM (pp. 1–9). San Diego, CA.

  75. Chen, Q., Tang, J., Wong, D., Peng, X., & Zhang, Y. (2013). Directional cooperative MAC protocol design and performance analysis for IEEE 802.11ad WLANs. IEEE Transactions on Vehicular Technology, 62(6), 2667–2677.

    Article  Google Scholar 

  76. Park, H., Park, S., Song, T., & Pack, S. (2013). An incremental multicast grouping scheme for mmWave networks with directional antennas. IEEE Communications Letters, 17(3), 616–619.

    Article  Google Scholar 

  77. Scott-Hayward, S., & Garcia-Palacios, E. (2015). Multimedia resource allocation in mmWave 5G networks. IEEE Communications Magazine, 53(1), 240–247.

    Article  Google Scholar 

  78. Sato, K., & Manabe, T. (1998). Estimation of propagation-path visibility for indoor wireless LAN systems under shadowing condition by human bodies. In 48th IEEE vehicular technology conference (pp. 2109–2113).

  79. Dong, K., Liao, X., & Zhu, S. (2012). Link blockage analysis for indoor 60 GHz radio systems. Electronics Letters, 48(23), 1506–1508.

    Article  Google Scholar 

  80. Genc, Z., et al. (2010). Robust 60 GHz indoor connectivity: Is it possible with reflections? In 2010 IEEE 71st vehicular technology conference (pp. 1–5). Taipei, Taiwan.

  81. Yiu, C., & Singh, S. (2009). Empirical capacity of mmWave WLANs. IEEE Journal on Selected Areas in Communications, 27(8), 1479–1487.

    Article  Google Scholar 

  82. An, X., et al. (2009). Beam switching support to resolve link-blockage problem in 60 GHz WPANs. In 2009 IEEE 20th international Symposium on personal, indoor and mobile radio communications (pp. 390–394). Tokyo, Japan.

  83. Park, M., & Pan, H. K. (2012). A spatial diversity technique for IEEE 802.11ad WLAN in 60 GHz band. IEEE Communications Letters, 16(8), 1260–1262.

    Article  Google Scholar 

  84. Xiao, Z. (2013). Suboptimal spatial diversity scheme for 60 GHz millimeter-wave WLAN. IEEE Communications Letters, 17(9), 1790–1793.

    Article  Google Scholar 

  85. Singh, S., Ziliotto, F., Madhow, U., Belding, E. M., & Rodwell, M. J. W. (2007). Millimeter wave WPAN: Cross-layer modeling and multihop architecture. In IEEE INFOCOM (pp. 2336–2240). Anchorage, US.

  86. Lan, Z., et al. (2010). Directional relay with spatial time slot scheduling for mmWave WPAN systems. In Proceedings of the VTC-Spring 2010 (pp. 1–5). Taipei, Taiwan.

  87. Lan, Z., Sum, C., Wang, J., Baykas, T., Kojima, F., Nakase, H., et al. (2009). Relay with deflection routing for effective throughput improvement in Gbps millimeter-wave WPAN systems. IEEE Journal on Selected Areas in Communications, 27(8), 1453–1465.

    Article  Google Scholar 

  88. Zhang, X., et al. (2012). Improving network throughput in 60 GHz WLANs via multi-AP diversity. In 2012 IEEE international conference on communications (pp. 4803–4807). Ottawa, Canada.

  89. Niu, Y., Li, Y., Jin, D., Su, L., & Wu, D. (2015). Blockage robust and efficient scheduling for directional mmWave WPANs. IEEE Transactions on Vehicular Technology, 64(2), 728–742.

    Article  Google Scholar 

  90. Wang, J., et al. (2010). Exploring multipath capacity for indoor 60 GHz radio networks. In 2010 IEEE international conference on communications (pp. 1–6). Cape Town, South Africa.

  91. IEEE doc. 11-09-0334-08-00ad. (2010). Channel models for 60 GHz WLAN systems.

  92. Lu, L., Zhang, X., Funada, R., Sum, C. S., & Harada, H. (2011). Selection of modulation and coding schemes of single carrier PHY for 802.11ad multi-gigabit mmWave WLAN systems. In 2011 IEEE Symposium on computers and communications (ISCC) (pp. 348–352).

  93. Gudipati, A., Perry, D., Li, L. E., & Katti, S. (2013). SoftRAN: Software defined radio access network. In Proceedings of the ACM HotSDN 2013 (pp. 25–30). Hong Kong, China.

  94. Bejerano, Y., & Bhatia, R. (2006). Mifi: A framework for fairness and QoS assurance in current IEEE 802.11 networks with multiple access points. IEEE Transactions on Networking, 14(4), 849–862.

    Article  Google Scholar 

  95. Arbaugh, W., Mishra, A., & Shin, M. (2003). An empirical analysis of the IEEE 802.11 MAC layer handoff process. ACM SIGCOMM Computer Communication Review, 33(2), 93–102.

    Article  Google Scholar 

  96. Bejerano, Y., Han, S., & Li, L. (2007). Fairness and load balancing in wireless lans using association control. IEEE Transactions on Networking, 15(3), 560–573.

    Article  Google Scholar 

  97. Athanasiou, G., Weeraddana, C., Fischione, C., & Tassiulas, L. (2015). Optimizing client association in 60 GHz wireless access networks. IEEE/ACM Transactions on Networking (to appear).

  98. Van Quang, B., Prasad, R. V., Niemieeger, I., & Huong, N. T. V. (2010). A study on handoff issues in radio over fiber network at 60 GHz. In 2010 Third international conference on communications and electronics (ICCE) (pp. 50–54).

  99. Tsagkaris, K., Vyrsokinos, K., Pleros, N., & Tselikas, N. D. (2009). Seamless communication in picocellurar 60 GHz radio-over-fiber networks. In IEEE/LEOS summer topical meeting (pp. 59–60).

  100. Pleros, N., Tsagkaris, K., & Tselikas, N. D. (2008). A moving extended cell concept for seamless communication in 60 GHz radio-over-fiber networks. IEEE Communications Letters, 12(11), 852–854.

    Article  Google Scholar 

  101. Ghosh, A., Thomas, T. A., Cudak, M. C., Ratasuk, R., Moorut, P., Vook, F. W., et al. (2014). Millimeter-wave enhanced local area systems: A high-data-rate approach for future wireless networks. IEEE Journal on Selected Areas in Communications, 32(6), 1152–1163.

    Article  Google Scholar 

  102. Rappaport, T. S., et al. (2013). Special session on mmWave communications. In Proceedings of the ICC. Budapest, Hungary.

  103. Baldemair, R., Irnich, T., Balachandran, K., Dahlman, E., Mildh, G., Seln, Y., et al. (2015). Ultra-dense networks in millimeter-wave frequencies. IEEE Communications Magazine, 53(1), 202–208.

    Article  Google Scholar 

  104. Singh, H., Oh, J., Kweon, C., Qin, X., Shao, H., & Ngo, C. (2008). A 60 GHz wireless network for enabling uncompressed video communication. IEEE Communications Magazine, 46(12), 71–78.

    Article  Google Scholar 

  105. Wu, D., Wang, J., Cai, Y., & Guizani, M. (2015). Millimeter-wave multimedia communications: Challenges, methodology, and applications. IEEE Communications Magazine, 53(1), 232–238.

    Article  Google Scholar 

  106. Rappaport, T., et al. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation, 61(4), 1850–1859.

    Article  MathSciNet  Google Scholar 

  107. Bai, T., Alkhateeb, A., & Heath, R. (2014). Coverage and capacity of millimeter-wave cellular networks. IEEE Communications Magazine, 52(9), 70–77.

    Article  Google Scholar 

  108. Bai, T., & Heath, R. (2015). Coverage and rate analysis for millimeter wave cellular networks. IEEE Transactions on Wireless Communications, 14(2), 1100–1114.

    Article  Google Scholar 

  109. Sulyman, A. I., Nassar, A. T., Samimi, M. K., Maccartney, G. R, Jr., Rappaport, T. S., & Alsanie, A. (2014). Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Communications Magazine, 52(9), 78–86.

    Article  Google Scholar 

  110. Taori, R., & Sridharan, A. (2015). Point-to-multipoint in-band mmwave backhaul for 5G networks. IEEE Communications Magazine, 53(1), 195–201.

    Article  Google Scholar 

  111. Bernardos, C. J., et al. (2013). Challenges of designing jointly the backhaul and radio access network in a cloud-based mobile network. In 2013 Future network and mobile summit (pp. 1–10). Lisboa.

  112. Niu, Y., Gao, C., Li, Y., Su, L., Jin, D., & Vasilakos, A. V. (2015). Exploiting device-to-device transmissions in joint scheduling of access and backhaul for small cells in 60 GHz band. IEEE Journal on Selected Areas in Communications (to appear).

  113. Sun, S., Rappaport, T. S., Heath, R. W., Nix, A., & Rangan, S. (2014). Mimo for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both? IEEE Communications Magazine, 52(12), 110–121.

    Article  Google Scholar 

  114. Alkhateeb, A., Mo, J., Gonzalez-Prelcic, N., & Heath, R. W. (2014). MIMO precoding and combining solutions for millimeter-wave systems. IEEE Communications Magazine, 52(12), 122–131.

    Article  Google Scholar 

  115. Liu, P., & Springer, A. (2015). Space shift keying (SSK) for LOS communication at mmWave frequencies. IEEE Wireless Communications Letters (to appear).

  116. Wei, L., Hu, R., Qian, Y., & Wu, G. (2014). Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications, 21(6), 136–143.

    Article  Google Scholar 

  117. Roh, W., Seol, J., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.

    Article  Google Scholar 

  118. El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Zhouyue, & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.

    Article  Google Scholar 

  119. Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 831–846.

    Article  Google Scholar 

  120. Singh, J., & Ramakrishna, S. (2015). On the feasibility of beamforming in millimeter wave communication systems with multiple antenna arrays. IEEE Transactions on Wireless Communications (to appear).

  121. Han, S., Chih-Lin, I., Xu, Z., & Rowell, C. (2015). Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Communications Magazine, 53(1), 186–194.

    Article  Google Scholar 

  122. Jain, M., Choi, J., Kim, T. T., Bharadia, D., Seth, S., Srinivasan, K., Levis, P., Katti, S., & Sinha, P. (2011). Practical, real-time, full duplex wireless. In Proceedings of ACM MobiCom11 (pp. 300–312).

  123. Radunovic, B., Gunawardena, D., Key, P., Proutiere, A., Singh, N., Balan, V., & Dejean, G. (2010). Rethinking indoor wireless mesh design: Low power, low frequency, full-duplex. In 2010 Fifth IEEE workshop on wireless mesh networks (WIMESH 2010) (pp. 1–6).

  124. Sen, S., Choudhury, R. R., & Nelakuditi, S. (2010). CSMA/CN: Carrier sense multiple access with collision notification. In Proceedings of the sixteenth annual international conference on mobile computing and networking (pp. 25–36). New York, USA.

  125. Tamaki, K., Ari Raptino H., Sugiyama, Y., Bandaiy, M., Saruwatari, S., & Watanabe, T. (2013). Full duplex media access control for wireless multi-hop networks. In IEEE 77th vehicular technology conference (VTC Spring) (pp. 1–5).

  126. Xie, X., & Zhang, X. (2014). Does full-duplex double the capacity of wireless networks? In Infocom14 (pp. 1–9).

  127. Miura, K., & Bandai, M. (2012). Node architecture and MAC protocol for full duplex wireless and directional antennas. In IEEE 23rd international Symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 369–374).

  128. Kim, H., & Feamster, N. (2013). Improving network management with software defined networking. IEEE Communications Magazine, 51(2), 114–119.

    Article  Google Scholar 

  129. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., et al. (2008). Openflow: Enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 38(2), 69–74.

    Article  Google Scholar 

  130. Ning, J., Kim, T.-S., Krishnamurthy, S. V., & Cordeiro, C. (2009). Directional neighbor discovery in 60 GHz indoor wireless networks. In Proceedings of the ACM MSWiM ’09 (pp. 365–373). Tenerife, Spain.

  131. Kim, M., Kim, Y. S., & Lee, W. (2013). Analysis of directional neighbour discovery process in millimetre wave wireless personal area networks. IET Networks, 2(2), 92–101.

    Article  Google Scholar 

  132. Park, H., Kim, Y., Song, T., & Pack, S. (2015). Multi-band directional neighbor discovery in self-organized mmWave ad-hoc networks. IEEE Transactions on Vehicular Technology, 64(3), 1143–1155.

    Article  Google Scholar 

  133. Zheng, K., Zhao, L., Mei, J., Dohler, M., Xiang, W., & Peng, Y. (2015). 10 Gb/s hetsnets with millimeter-wave communications: Access and networking-challenges and protocols. IEEE Communications Magazine, 53(1), 222–231.

    Article  Google Scholar 

  134. Zhao, H., Mayzus, R., Sun, S., Samimi, M., Schulz, J. K., Azar, Y., Wang, K., Wong, G. N., Gutierrez, F., & Rappaport, T. S. (2013). 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York City. In Proceedings of the IEEE international conference communications (pp. 5163–5167).

  135. Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.

    Article  Google Scholar 

  136. Qualcomm, LTE Advanced: Heterogeneous networks, White Paper, Jan. 2011. [Online]. http://www.qualcomm.com/media/documents.

  137. Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.

    Article  Google Scholar 

  138. Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2009). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.

    Article  Google Scholar 

  139. Mehrpouyan, H., Matthaiou, M., Wang, R., Karagiannidis, G. K., & Hua, Y. (2015). Hybrid millimeter-wave systems: A novel paradigm for HetNets. IEEE Communications Magazine, 53(1), 216–221.

    Article  Google Scholar 

  140. Lee, K., et al. (2010). Mobile data offloading: How much can WiFi deliver? In Co-NEXT ’10 proceedings of the 6th international conference.

  141. Qiao, J., Shen, X. S., Mark, J. W., Shen, Q., He, Y., & Lei, L. (2015). Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Communications Magazine, 53(1), 209–215.

    Article  Google Scholar 

  142. Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.

    Article  Google Scholar 

  143. Hu, R. Q., & Qian, Y. (2013). Heterogeneous cellular networks. London: Wiley.

    Book  Google Scholar 

  144. Bansal, M., Mehlman, J., Katti, S., & Levis, P. (2012). Openradio: A programmable wireless dataplane. In Proceedings of the first workshop on hot topics in software defined networks (pp. 109–114).

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (NSFC) under grant No. 61201189 and 61132002, National High Tech (863) Projects under Grant No. 2011AA010202, Research Fund of Tsinghua University under No. 2011Z05117 and 20121087985, and Shenzhen Strategic Emerging Industry Development Special Funds under No. CXZZ20120616141708264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Li, Y., Jin, D. et al. A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wireless Netw 21, 2657–2676 (2015). https://doi.org/10.1007/s11276-015-0942-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0942-z

Keywords

Navigation