Skip to main content
Log in

An architecture for (m, k)-firm real-time streams in wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Despite increasing demand of application specific requirements in wireless sensor networks, lots of research is still going on under assumption of general requirement without considering specific traffic model as well as several constraints. To address this issue, we have already introduced a new real-time application with (m, k)-firm model and developed communication protocols for multimedia sensor networks. But, scalability problem and lack of architecture for (m, k)-firm stream are major research challenges that remain unsolved. Based on corresponding demands, in this paper, we propose a new integrated architecture for (m, k)-firm stream in wireless sensor networks with following functions, that is, flow aggregation based on compositional hierarchical model, velocity based routing protocol, hybrid medium access control protocol, and congestion control scheme. Simulation results are given to prove the suitability of the architecture and performance improvement under several scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Teixeira, T., Culurciello, E., Park, J. H., Lymberopoulos, D., Barton-Sweeney, A., & Savvides, A. (2006). Address-event imagers for sensor networks: Evaluation and modeling. In Proceedings of the international conference on information processing in sensor networks (pp. 458–466). ACM.

  2. Demestichas, P. P., Stavroulaki, V. A. G., Papadopoulou, L. M., Vasilakos, A. V., & Theologou, M. E. (2004). Service configuration and traffic distribution in composite radio environments. IEEE Transactions on Systems, Man, and Cybernetics, 34(1), 69–81.

    Article  Google Scholar 

  3. Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., & Kwon, T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  4. Chilamkurti, N., Zeadally, S., Vasilakos, A., & Sharma, V. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors. doi:10.1155/2009/134165.

  5. Ehsan, S., & Hamdaoui, B. (2012). A survey on energy-efficient routing techniques with qos assurances for wireless multimedia sensor networks. IEEE Communications Surveys and Tutorials, 14(2), 265–278.

    Article  Google Scholar 

  6. Wan, Z., Xiong, N., Ghani, N., Vasilaokos, A. V., & Zhou, L. (2014). Adaptive unequal protection for wireless video transmission over ieee 802.11e networks. Multimedia Tools and Applications, 72(1), 541–571.

    Article  Google Scholar 

  7. Wan, Z., Xiong, N., & Tang, L. (2015). Cross-layer video transmission over ieee 802.11e multihop networks. Multimedia Tools and Applications, 74(1), 5–23.

    Article  Google Scholar 

  8. Shen, Z., Luo, J., Zimmermann, R., & Vasilakos, A. V. (2011). Peer-to-peer media streaming: Insights and new developments. Proceedings of the IEEE, 99(12), 2089–2109.

    Article  Google Scholar 

  9. He, D., Chen, C., Bu, J., & Vasilakos, A. V. (2012). A distributed trust evaluation model and its application scenarios for medical sensor networks. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1164–1175.

    Article  Google Scholar 

  10. Acampora, G., Rashidi, P., & Vasilakos, A. V. (2013). A survey on ambient intelligence in healthcare. Proceedings of the IEEE, 101(12), 2470–2494.

    Article  Google Scholar 

  11. Chen, M., Gonzalez, G., Vasilakos, A. V., Cao, H., & Leung, V. (2011). Body area networks: A survey. Mobile Networks and Applications, 16(2), 171–193.

    Article  Google Scholar 

  12. He, D., Chen, C., Chan, S., Bu, J., & Vasilakos, A. V. (2012). Retrust: Attack-resistant and lightweight trust management for medical sensor networks. IEEE Transactions on Information Technology in Biomedicine, 16(4), 623–632.

    Article  Google Scholar 

  13. He, T., Stankovic, J. A., Lu, C. & Abdelzaher, T. (2003). Speed: A stateless protocol for real-time communication in sensor networks. In Proceedings of international conference on distributed computing systems (pp. 46–55). IEEE.

  14. Felemban, E., Lee, C. G., & Ekici, E. (2006). Mmspeed: Multipath multi-speed protocol for qos guarantee of reliability and timeliness in wireless sensor networks. IEEE Transactions on Mobile Computing, 5(6), 738–754.

    Article  Google Scholar 

  15. Zhao, L., Kan, B., Xu, Y., & Li, X. (2007). Ft-speed: A fault-tolerant, real-time routing protocol for wireless sensor networks. In Proceedings of international conference on wireless communications, networking and mobile computing (pp. 2531–2534). IEEE.

  16. Al-Jarrah, O., Salhieh, A., & Qaroush, A. (2010). Real-time power-aware routing protocol for wireless sensor network. In Proceedings of international conference on information systems, technology and management (pp. 156–166). Springer.

  17. Kim, J., & Ravindran, B. (2009). Opportunistic real-time routing in multi-hop wireless sensor networks. In Proceedings of the ACM symposium on applied computing (pp. 2197–2201). ACM.

  18. Yaeghoobi, K. S. B., Tyagi, S. S., Soni, M. K., & Ebadati, O. M., Saerp, E. (2014). An energy efficiency real-time routing protocol in wsns. In Proceedings of 2014 international conference on optimization, reliability, and information technology (pp. 249–254). IEEE.

  19. Yuanyuan, Z., Sreenan, C. J., & Sitanayah, L. (2010). A real-time and robust routing protocol for building fire emergency applications using wireless sensor networks. In Proceedings of IEEE international conference on pervasive computing and communications workshops (pp. 358–363). IEEE.

  20. Xu, Y., Ren, F., He, T., Lin, C., Chen, C., & Das, S. K. (2013). Real-time routing in wireless sensor networks: A potential field approach. ACM Transactions on Sensor Networks, 9(3), 35:1–35:24.

    Article  Google Scholar 

  21. Rachamalla, S., & Kancharla, A. S. (2013). A survey of real-time routing protocols for wireless sensor networks. International Journal of Computer Science & Engineering Survey, 4(3), 35–44.

    Article  Google Scholar 

  22. Zeng, Y., Xinag, K., Ki, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  23. Youssef, M., Abdelatif, M., Chen, L., Cao, H., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  24. Dvir, A., & Vasilakos, A. V. (2010). Backpressure-based routing protocol for dtns. In Proceedings of ACM SIGCOMM (pp. 405–406). ACM.

  25. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A. V., McCann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.

    Article  Google Scholar 

  26. Teng, Z., & Kim, K. (2010). A survey on real-time mac protocols in wireless sensor networks. Communications and Network, 2(2), 104–112.

    Article  Google Scholar 

  27. Pal, P., & Chatterjee, P. (2014). A survey on tdma-based mac protocols for wireless sensor network. International Journal of Emerging Technology & Advanced Engineering, 4(6), 219–230.

    Google Scholar 

  28. Han, K., Luo, J., Liu, Y., & Vasilakos, A. V. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: a survey. IEEE Communications Magazine, 51(7), 1093–1102.

    Article  Google Scholar 

  29. Sengupta, S., Das, S., Nasir, M., Vasilakos, A. V., & Pedrycz, W. (2012). An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, 42(6), 1093–1102.

    Article  Google Scholar 

  30. Mouradian, A., Aug-Blum, I., & Valois, F. (2014). Rtxp: A localized real-time mac-routing protocol for wireless sensor networks. Computer Networks, 67, 43–59.

    Article  Google Scholar 

  31. Sitanayah, L., Sreenan, C. J., & Brown, K. N. (2014). A hybrid mac protocol for emergency response wireless sensor networks. Ad Hoc Networks, 20, 77–95.

    Article  Google Scholar 

  32. Xiao, Y., Peng, M., Gibson, J., Xie, G., Du, D. Z., & Vasilakos, A. V. (2012). Tight performance bounds of multihop fair access for mac protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.

    Article  Google Scholar 

  33. Kafi, M., Djenouri, D., Badache, N., & Ben-Othman, J. (2014). Congestion control protocols in wireless sensor networks: A survey. IEEE Communications Survey & Tutorials, 16(3), 77–95.

    Article  Google Scholar 

  34. Sergiou, C., Antoniou, P., & Vassiliou, V. (2014). A comprehensive survey of congestion control protocols in wireless sensor networks. IEEE Communications Survey & Tutorials, 16(4), 1839–1859.

    Article  Google Scholar 

  35. Akan, Ö. B., & Akyildiz, I. F. (2005). Event-to-sink reliable transport in wireless sensor networks. IEEE/ACM Transactions on Networking, 13(5), 1003–1016.

    Article  Google Scholar 

  36. Yaghmaee, M.H., & Adjeroh, D. (2008). A new priority based congestion control protocol for wireless multimedia sensor networks. In Proceedings of international symposium on world of wireless, mobile and multimedia networks (pp. 1–8). IEEE.

  37. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). Edal: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In Proceedings of IEEE international conference on mobile ad-hoc and sensor systems (pp. 182–190). IEEE.

  38. Wei, G., Ling, Y., Guo, B., Xiao, B., & Vasilakos, A. V. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and kalman filter. Computer Communications, 34(6), 793–802.

    Article  Google Scholar 

  39. Xiang, L., Leo, J., & Vasilakos, A. V. (2011) Compressed data aggregation for energy efficient wireless sensor networks. In Proceedings of IEEE international conference on sensor, mesh and ad hoc communications and networks (pp. 46–54). IEEE.

  40. Wu, M. (2014). Cdc: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, Preprint.

  41. Peng, L., Song, G., Shu, Y., & Vasilakos, A. V. (2012). Codepipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In Proceedings of IEEE conference on computer communications (pp. 100–108). IEEE.

  42. Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  43. Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.

    MathSciNet  Google Scholar 

  44. Hamdaoui, M., & Ramanathan, P. (1995). A dynamic priority assignment technique for streams with (m, k)-firm deadlines. IEEE Transactions on Computers, 44(12), 1443–1451.

    Article  MathSciNet  MATH  Google Scholar 

  45. Kim, K., & Sung, T. (2010). Network layer approaches for (m, k)-firm stream in wireless sensor networks. IEICE Transactions on Communications, E93–B(11), 3165–3168.

    Article  Google Scholar 

  46. Li, B., & Kim, K. (2012). A novel routing protocol for (m, k)-firm-based real-time streams in wireless sensor networks. In Proceedings of IEEE wireless communications and networking conference (pp. 1715–1719). IEEE.

  47. Li, B., & Kim, K. (2012). An (m, k)-firm real-time aware fault-tolerant mechanism in wireless sensor networks. International Journal of Distributed Sensor Networks.

  48. Li, J., & Kim, K. (2013). A real-time routing protocol for (m, k)-firm streams in wireless sensor networks. In Proceedings of IEEE international conference on intelligent sensors, sensor networks and information processing IEEE.

  49. Kim, K., & Sung, T. (2013). Cross-layered approach for (m, k)-firm stream in wireless sensor networks. Wireless Personal Communications, 68(4), 1883–1902.

    Article  Google Scholar 

  50. Kim, K., & Sung, T. (2015). Modeling and routing scheme for (m, k)-firm streams in wireless multimedia sensor networks. Wireless Communications and Mobile Computing, 15(3), 475–483.

    Article  Google Scholar 

  51. Li, J., & Kim, K. (2014). A novel routing protocol for (m, k)-firm-based real-time streams in wireless sensor networks. Wireless Networks, 20, 719–731.

    Article  Google Scholar 

  52. Zhao, C., & Xiong, H. (2012). A channel-aware scheduling scheme for (m, k)-firm streams in wireless multimedia sensor networks. IEICE Transactions on Communications, E95–B(10), 3312–3315.

    Article  Google Scholar 

  53. Shin, I., & Lee, I. (2003). Periodic resource model for compositional real-time guarantees. In Proceedings of IEEE real-time systems symposium (pp. 2–13). IEEE.

Download references

Acknowledgments

This work was supported by Basic Science Research Program (NRF-2013R1A1A2A10004587) and the BK21 Plus Program (Research Team for Software Platform on Unmanned Aerial Vehicle, 21A20131600012) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Il Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C., Shah, B. & Kim, KI. An architecture for (m, k)-firm real-time streams in wireless sensor networks. Wireless Netw 22, 69–81 (2016). https://doi.org/10.1007/s11276-015-0953-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0953-9

Keywords

Navigation