Skip to main content
Log in

On a spectral analysis of IEEE802.11 queueing networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The importance and necessity of analytically evaluating the performances of IEEE802.11 wireless networks in non-saturation mode have increasingly been emphasized. Unfortunately, very few such works have been conducted due to the analytical complexity of high-dimensional stochastic processes. Bae et al. (Ann Oper Res 162:3–18, 2008) modelled the dynamics of the non-saturation mode IEEE802.11 distribution coordination function using a 3-dimensional Markovian process and computed the stationary probability distribution by the matrix analytic method. However, their computation procedure requires a large calculation complexity because of the explosion of the state space and iteration algorithms. In this paper, we originally apply the spectral method to derive the stationary probability distribution and mean HoL-delay time for the IEEE802.11 model in Bae et al. (2008). Our study shows that the spectral method is a very efficient technique in performance analyses of the queueing systems such as IEEE802.11 and IEEE802.16 wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bianchi, G. (2000). Performance analysis of the IEEE802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  2. Bianchi, G., & Tinnirello, I. (2005). Remarks on IEEE802.11 DCF performance analysis. IEEE Communications Letters, 9(8), 765–767.

    Article  Google Scholar 

  3. Bae, Y. H., Kim, K. J., Moon, M. N., & Choi, B. D. (2008). Analysis of IEEE 802.11 non-saturated DCF by matrix analytic methods. Annals of Operations Research, 162, 3–18.

    Article  MathSciNet  MATH  Google Scholar 

  4. Gail, H. R., Hantler, S. L., Konheim, A. G., & Taylor, B. A. (1994). An analysis of a class of telecommunications models. Performance Evaluation, 21, 151–161.

    Article  MathSciNet  MATH  Google Scholar 

  5. Gail, H. R., Hantler, S. L., Sidi, M., & Taylor, B. A. (1995). Linear independence of root equations for M/G/1 type Markov chains. Queueing Systems, 20, 321–339.

    Article  MathSciNet  MATH  Google Scholar 

  6. Gail, H. R., Hantler, S. L., & Taylor, B. A. (1996). Spectral analysis of M/G/1 and G/M/1 type Markov chains. Advances in Applied Probability, 28, 114–165.

    Article  MathSciNet  MATH  Google Scholar 

  7. Hamed, M. K., Alaremi, A., Choi, J., Vijaykummar, R., & Roy, S. (2007). Stochastic modelling and analysis of 802.11 DCF with heterogeneous non-saturated nodes. Computer Communications Journal, 30(18), 3652–3661.

    Article  Google Scholar 

  8. He, J., & Pung, H. K. (2006). Performance modelling and evaluation of IEEE 802.11 distributed coordination function in multihop wireless networks. Elsevier Computer Communications Journal, 29(9), 1300–1308.

    Article  Google Scholar 

  9. Kim, T. O., Kim, J. K., & Choi, B. D. (2008). Performance analysis of IEEE802.11 DCF and IEEE 802.11e EDCA in non-saturation condition. IEICE Transactions on Communication, E91B(4), 1122–1131.

  10. Meerja, K. A., Shami, A., & Bai, X. (2006, November). Analysis of a new 802.11 distributed media access control protocol. In Proceedings of IEEE Globecom, San Francisco, CA (pp. 1–5).

  11. Meerja, K. A., & shami, A. (2007). Analysis of new distributed-media access-control schemes for IEEE 802.11 wireless local-area networks. IEEE Transactions on Vehicular Technology, 56(4), 1797–1812.

    Article  Google Scholar 

  12. Neuts, M. F. (1989). Structured stochastic matrices of M/G/1 type and their applications. New York: Marcel Dekker.

    MATH  Google Scholar 

  13. Nishimura, S., & Jiang, Y. (2000). Spectral analysis of the matrix generating function for an MAP/SM/1 queue. Communications in Statistics. Stochastic Models, 16, 99–120.

    Article  MathSciNet  MATH  Google Scholar 

  14. Nishimura, S. (2000). A spectral analysis for a MAP/D/1 queue. In G. Latouche & P. Taylor (Eds.), Advances in algorithmic methods for stochastic models (pp. 279–294).

  15. Tickoo, O., & Sikdar, B. (2004). A queueing model for finite load IEEE802.11 random access MAC. In IEEE International Conference on Communications (Vol. 1, pp. 175–179).

  16. Tickoo, O., & Sikdar, B. (2004). Queueing analysis and delay mitigation in IEEE802.11 random access MAC based wireless networks. In Proceedings of IEEE INFOCOM, Hong Kong, China.

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Feng.

Appendices

Appendix 1: The component matrices of the transition matrix P

$$\bar{C}_{0}=[q_0],\quad \bar{C}_{1}=\left[ \begin{array}{llllll} {C}_{10} \\ {C}_{11} \\ \vdots \\ {C}_{1m} \\ \end{array} \right] ,$$

where \({\mathbf{C}}_{1i}=\left[ \begin{array}{ccccccccccccc} (1-p)s_{0}+pt_0 \\ 0 \\ \vdots \\ 0 \\ \end{array} \right] _{W_i\times 1,} \ \ 0\le i \le m-1; \ \ {\mathbf{C}}_{1m}=\left[ \begin{array}{ccccccccccccc} (1-p)s_{0} \\ 0 \\ \vdots \\ 0 \\ \end{array} \right] _{W_m\times 1.}\)

$$\begin{aligned}{C}_{2}= & {} \left[ \begin{array}{llll} {C}_{20} &{} 0 &{} \cdots &{} 0 \\ {C}_{21} &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ {C}_{2m} &{} 0 &{} \cdots &{} 0 \end{array} \right] \ \ \text{ where }\ \ {\mathbf{C}}_{2i}=\left[ \begin{array}{ccccccccc} \frac{(1-p)s_{0}}{W_{0}} &{} \frac{(1-p)s_{0}}{W_{0}} &{} \cdots &{} \frac{(1-p)s_{0}}{W_{0}} \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{W_{i}\times W_{0},} \ 0\le i\le m-1; \\ {\mathbf{C}}_{2m}= & {} \left[ \begin{array}{ccccccccc} \frac{(1-p)s_{0}+pt_0}{W_{0}} &{} \frac{(1-p)s_{0}+p_0t_0}{W_{0}} &{} \cdots &{} \frac{(1-p)s_{0}+p_0t_0}{W_{0}} \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{W_{i}\times W_{0}.}\\ \bar{A}_{k}= & {} \left[ \frac{q_k}{W_0} \cdots \frac{q_k}{W_0}, {\mathbf{0}}_{1\times W_1}, \cdots , {\mathbf{0}}_{1\times W_m}\right] ,\ \ k\ge 1.\\ {B}_{k}= & {} \left[ \begin{array}{ccccccccccccc} D_{0}^{(k)} &{} E_1^{(k)} &{} 0 &{} \cdots &{} 0 &{} 0 \\ D_{1}^{(k)} &{} F_{1}^{(k)} &{} E_{2}^{(k)} &{} \cdots &{} 0 &{} 0 \\ D_{2}^{(k)} &{} 0 &{} F_{2}^{(k)} &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ D_{m-1}^{(k)} &{} 0 &{} 0 &{} \cdots &{} F_{m-1}^{(k)} &{} E_{m}^{(k)} \\ D_m^{(k)} &{} 0 &{} 0 &{} \cdots &{} 0 &{} F_{m}^{(k)} \end{array} \right] \end{aligned},$$

where

$$\begin{aligned}{D}_{0}^{(k)}= & {} \left[ \begin{array}{ccccccccccccc} \frac{(1-p)s_{k}}{W_{0}} &{} \frac{(1-p)s_{k}}{W_{0}} &{} \cdots &{} \frac{(1-p)s_{k}}{W_{0}} &{} \frac{(1-p)s_{k}}{W_{0}} \\ q_{k-1} &{} 0 &{} \cdots &{} 0 &{}0 \\ 0 &{} q_{k-1} &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 &{} \\ 0 &{} 0 &{} \cdots &{} q_{k-1} &{}0 \end{array} \right] , \ {D}_{i}^{(k)}=\left[ \begin{array}{cccccccccc} \frac{(1-p)s_{k}}{W_{0}} &{} \frac{(1-p)s_{k}}{W_{0}} &{} \cdots &{} \frac{(1-p)s_{k}}{W_{0}} \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{W_i \times W_{0},} \\ {D}_{m}^{(k)}= & {} \left[ \begin{array}{cccccccccc} \frac{(1-p)s_{k}+pt_k}{W_{0}} &{} \frac{(1-p)s_{k}+pt_k}{W_{0}} &{} \cdots &{} \frac{(1-p)s_{k}+pt_k}{W_{0}} \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{W_m \times W_{0},}\\ {E}_{i}^{(k)}= & {} \left[ \begin{array}{ccccccccc} \frac{pt_{k-1}}{W_{i}} &{} \frac{pt_{k-1}}{W_{i}} &{} \cdots &{} \frac{pt_{k-1}}{W_{i}} \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{W_{i-1} \times W_i,} {F}_{i}^{(k)}=\left[ \begin{array}{cccccccccccccccc} 0 &{} 0 &{} \cdots &{} 0 &{} 0 \\ q_{k-1} &{} 0 &{} \cdots &{} 0 &{} 0 \\ 0 &{} q_{k-1} &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} q_{k-1} &{} 0 \end{array} \right] _{W_i \times W_i,} \ 1\le i \le m \end{aligned}.$$

Appendix 2

(1) Component matrices of the matrix generating function B(z)

$$\begin{aligned}{D}_{0}(z)= & {} \left[ \begin{array}{ccccccccccccc} \frac{(1-p)s(z)}{W_{0}} &{} \frac{(1-p)s(z)}{W_{0}} &{} \cdots &{} \frac{(1-p)s(z)}{W_{0}} &{} \frac{(1-p)s(z)}{W_{0}} \\ zq(z) &{} 0 &{} \cdots &{} 0 &{}0 \\ 0 &{} zq(z) &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 &{} \\ 0 &{} 0 &{} \cdots &{} zq(z) &{}0 \end{array} \right] \\ {D}_{i}(z)= & {} \left[ \begin{array}{cccccccccc} \frac{(1-p)s(z)}{W_{0}} &{} \frac{(1-p)s(z)}{W_{0}} &{} \cdots &{} \frac{(1-p)s(z)}{W_{0}} \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{W_i \times W_{0},} \\ {D}_{m}(z)= & {} \left[ \begin{array}{cccccccccc} \frac{(1-p)s(z)+pt(z)}{W_{0}} &{} \frac{(1-p)s(z)+pt(z)}{W_{0}} &{} \cdots &{} \frac{(1-p)s(z)+pt(z)}{W_{0}} \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{W_m \times W_{0},} \\ {E}_{i}(z)= & {} \left[ \begin{array}{ccccccccc} \frac{pzt(z)}{W_{i}} &{} \frac{pzt(z)}{W_{i}} &{} \cdots &{} \frac{pzt(z)}{W_{i}} \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{W_{i-1} \times W_i,} {F}_{i}(z)=\left[ \begin{array}{cccccccccccccccc} 0 &{} 0 &{} \cdots &{} 0 &{} 0 \\ zq(z) &{} 0 &{} \cdots &{} 0 &{} 0 \\ 0 &{} zq(z) &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} zq(z) &{} 0 \\ \end{array} \right] _{W_i \times W_i.} \end{aligned}$$

(2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W. On a spectral analysis of IEEE802.11 queueing networks. Wireless Netw 22, 159–173 (2016). https://doi.org/10.1007/s11276-015-0956-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0956-6

Keywords

Navigation