Skip to main content
Log in

Novel Quick Start (QS) method for optimization of TCP

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

With the development of Internet, various kinds of new applications appear constantly. They all have high requirements to the time delay, throughput, especially strong real-time applications such as mobile monitoring, video calls. The satellite network in Navigation Satellite System, which is necessary for the mobile monitoring, has many disadvantages such as asymmetric bandwidth, unstable network, high bit error rate and so on. This is a new challenge to the existing congestion control method. In order to improve the performance of congestion control mechanism, we put forward TCP-QS (Quick Start) from the TCP protocol control in this paper. TCP-QS algorithm mainly optimize the slow start stage. At the beginning of the connection, the value of parameter cwnd is set as a larger value according to the detected network bandwidth in which way, the time of the slow start stage is shortened during the transmission, and is adjusted the value of parameter ssthresh dynamically according to the change of network. When packet loss occurs, it takes different methods according to the different reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang, D. G., Wang, X., & Song, X. D. (2014). A novel approach to mapped correlation of ID for RFID anti-collision. IEEE Transactions on Service Computing, 7(4), 741–748. doi:10.1109/TSC.2014.2370642.

    Article  MathSciNet  Google Scholar 

  2. BeiDou Navigation Satellite System. http://en.beidou.gov.cn/.

  3. Marron, I. L., & Babieri, L. A. (2013). TCP performance—CUBIC, Vegas & Reno. JCST, 13(1), 1–8.

    Google Scholar 

  4. Zhu, J. W., & Joseph, S. (2006). Performance of Tahoe, Reno, and SACK TCP at Different Scenarios. In Proceedings of international conference on communication technology, Guilin, 2006,11(1):1–4.

  5. Alberto, B., & Konstantin, A. (2009). Compound TCP with random losses. In NETWORKING 2009, lecture notes in computer science, 2009, 5550(1):482–494.

  6. Mohanad, A. H., Kamaruzzaman, S., & Kamarudien, S. (2014). Enhanced TCP Westwood slow start phase. Transactions on Networks and Communications, 2(5), 194–200.

    Google Scholar 

  7. Zhang, D. G., & Zhao, C. P. (2012). A new medium access control protocol based on perceived data reliability and spatial correlation in wireless sensor network. Computers & Electrical Engineering, 38(3), 694–702.

    Article  Google Scholar 

  8. Zhou, W., Xing, W. (2012). TCP Vegas-V: Improving the performance of TCP Vegas. In Proceedings of IEEE international conference on automatic control and artificial intelligence, Xiamen, 2012, 3(1):2034–2039.

  9. Omar, A. H., & Eitan, A. (2006). Analysis of TCP Vegas and TCP Reno. Telecommunication Systems, 15(3–4), 381–404.

    Google Scholar 

  10. Jin, J., Sridharan, A., & Krishnamachari, B. (2010). Handling inelastic traffic in wireless sensor networks. IEEE Transactions on Selected Areas in Communications, 28(7), 1105–1115.

    Article  Google Scholar 

  11. Zhang, D. G., & Zhang, X. D. (2012). Design and implementation of embedded un-interruptible power supply system (EUPSS) for web-based mobile application. Enterprise Information Systems, 6(4), 473–489.

    Article  Google Scholar 

  12. Ardagna, C. A., Conti, M., & Leone, M. (2014). An anonymous end-to-end communication protocol for mobile cloud environments. IEEE Transactions on Service Computing, 7(3), 373–386.

    Article  Google Scholar 

  13. Zhang, D. G. (2012). A new method of non-line wavelet shrinkage denoising based on spherical coordinates. INFORMATION-An International interdisciplinary Journal, 15(1), 141–148.

    MathSciNet  Google Scholar 

  14. Aweya, J., & Hystart, T. (2013). Technique for differential timing transfer over packet networks. IEEE Transactions on Industrial Informatics, 9(1), 325–336.

    Article  Google Scholar 

  15. Zhang, D. G. (2012). A new approach and system for attentive mobile learning based on seamless migration. Applied Intelligence, 36(1), 75–89.

    Article  MATH  Google Scholar 

  16. Inoie, A. (2014). Audio quality in lossy networks for media-specific forward error correction schemes. International Journal of Communication Systems, 2. doi:10.1002/dac.2361.

  17. Zhang, D. G., & Kang, X. J. (2012). A novel image de-noising method based on spherical coordinates system. EURASIP Journal on Advances in Signal Processing, 1, 110. doi:10.1186/1687-6180-2012-110.

    Article  Google Scholar 

  18. Schoute, F. C. (1983). Dynamic frame length ALOHA. IEEE Transactions on Communications, 31(4), 565–568.

    Article  Google Scholar 

  19. Zhang, D. G., & Zhu, Y. N. (2012). A new constructing approach for a weighted topology of wireless sensor networks based on local-world theory for the Internet of Things (IOT). Computers & Mathematics with Applications, 64(5), 1044–1055.

    Article  Google Scholar 

  20. Su, W. L. (2010). Multiple RFID tags access algorithm. IEEE Transactions on Mobile Computing, 9(2), 174–187.

    Article  Google Scholar 

  21. Zhang, D. G., & Liang, Y. P. (2013). A kind of novel method of service-aware computing for uncertain mobile applications. Mathematical and Computer Modeling, 57(3–4), 344–356.

    Article  MathSciNet  Google Scholar 

  22. Bonuccelli, M. A., Lonetti, F., & Martelli, F. (2006). Tree slotted ALOHA: A new protocol for tag identification in RFID networks. In Proceedings of the international symposium on a world of wireless, mobile and multimedia networks (pp. 603–608). New York: IEEE.

  23. Park, J. H., & Chung, M. Y. (2007). Identification of RFID tags in framed-slotted ALOHA with robust estimation and binary selection. IEEE Communications Letters, 11(5), 452–454.

    Article  Google Scholar 

  24. Zhang, D. G., Li, G., & Pan, Z. H. (2014). A new anti-collision algorithm for RFID tag. International Journal of Communication Systems, 27(11), 3312–3322.

    Google Scholar 

  25. Zhang, D. G., Li, G., & Zheng, K. (2014). An energy-balanced routing method based on forward-aware factor for wireless sensor network. IEEE Transactions on Industrial Informatics, 10(1), 766–773.

    Article  Google Scholar 

  26. Reza, M. R. (2013). MuSIC: Mobility-aware optimal service allocation in mobile cloud computing. In: IEEE CLOUD, 2013, pp. 75–82.

  27. Yanjun, Y. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In MASS, 2013, pp. 182–190.

  28. Yanjun, Y. (2014). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. In 2014. doi:10.1109/IEEE/ACMTransactionsonNetworking.2014.2306592.

  29. Reza, M. R. (2012). Mobile cloud computing: A survey, state of art and future directions. MONET, 19(2), 133–143.

    Google Scholar 

  30. Sheng, Z. (2013). A survey on the ietf protocol suite for the internet of things: standards, challenges, and opportunities. Wireless Communications IEEE, 20(6), 91–98.

    Article  Google Scholar 

  31. Xiao, Y. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.

    Article  Google Scholar 

  32. Liu, X., Luo, J., & Vasilakos, A. V. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In Proceedings of IEEE International Conference on Sensing, Communication, and Networking (SECON), Utah, 2011, pp. 46–54.

  33. Peng, L. (2012). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipe lined network coding. In Proceedings of IEEE International Conference on Computer Communications (INFOCOM), Orlando, 2012, pp. 100–108.

  34. Kassotakis, I. E. (2000). A hybrid genetic approach for channel reuse in multiple access telecommunication networks. IEEE Journal on Selected Areas in Communications, 18(2), 234–243.

    Article  Google Scholar 

  35. Reza, M. R. (2012). MAPCloud: Mobile applications on an elastic and scalable 2-tier cloud architecture. In Proceedings of IEEE/ACM International Conference on Utility and Cloud Computing (UCC), Chicago, 2012, pp. 83–90.

  36. Demestichas, P. (2004). Service configuration and traffic distribution in composite radio environments. IEEE Transactions on Systems, Man, and Cybernetics, 34(1), 69–81.

    Article  Google Scholar 

  37. Song, Y. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  38. Liu, L. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.

    Google Scholar 

  39. Vasilakos, A. (1998). Evolutionary-fuzzy prediction for strategic QoS routing in broadband networks. In The 1998 IEEE international conference on fuzzy systems proceedings, 1998, Vol. 2, pp. 1488–1493.

  40. Vasilakos, A. (2012). Delay tolerant networks: Protocols and applications (Vol. 2, pp. 50–69). CRC Press.

Download references

Acknowledgments

This research work is supported by National Natural Science Foundation of China (Grant Nos. 61170173 and 61202169), Tianjin Key Natural Science Foundation (No. 13JCZDJC34600), Training plan of Tianjin University Innovation Team (No. TD12-5016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-gan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Dg., Zheng, K., Zhao, Dx. et al. Novel Quick Start (QS) method for optimization of TCP. Wireless Netw 22, 211–222 (2016). https://doi.org/10.1007/s11276-015-0968-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0968-2

Keywords

Navigation