Skip to main content

Advertisement

Log in

Energy efficiency optimization of one-way and two-way DF relaying considering circuit power

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, the energy efficiency (EE) of a decode and forward (DF) relay system is studied, where two sources communicate through a half-duplex relay node in one-way and two-way relaying strategies. Both the circuitry power and the transmission power of all nodes are taken into consideration. In addition, three different coding schemes for two-way DF relaying strategy with two phases and two-way DF relaying with three phases are considered. The aim is to maximize the EE of the system for a constant spectral efficiency (SE). For this purpose, the transmission time and the transmission power of each node are optimized. Simulations are used to compare the EE–SE curve of different DF strategies with one-way and two-way amplify and forward (AF) strategies and direct transmission (DT), to find the best energy efficient strategy in different SE conditions. Analytical and simulation results demonstrate that in low SE conditions, DF relaying strategies are more energy efficient compared to that of AF strategies and DT. However, in high SE conditions, the EE of two-way AF relaying and DT strategy outperform some of the DF relaying strategies. In simulations, the impact of different circuitry power and different channel conditions on the EE–SE curves are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen, Y., Li, Y., Zhang, S., Chen, Y., & Xu, S. (2009). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine, 9(4), 529–542.

    Google Scholar 

  2. Li, G. Y., Xu, Z., Xiong, C., Yang, C., Zhang, S., Chen, Y., & Xu, S. (2011). Energy efficient wireless communication tutorial survey and open issues. IEEE Wireless Communications, 18, 28–35.

    Article  Google Scholar 

  3. Cui, S., Goldsmith, A., & Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Trans on Wireless Communications, 4(5), 2349–2360.

    Article  Google Scholar 

  4. Cui, S., Goldsmith, A., & Bahai, A. (2004). Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications, 22(6), 1089–1098.

    Article  Google Scholar 

  5. Zhou, Z., Zhou, S., Cui, S., & Cui, J. H. (2008). Energy-efficient cooperative communication in a clustered wireless sensor network. Vehicular Technology, IEEE Transactions on, 57(6), 3618–3628.

    Article  Google Scholar 

  6. Miao, G., Himayat, N., & Li, G. Y. (2010). Energy-efficient link adaptation in frequency-selective channels. IEEE Transactions on Commun, 58(2), 545–554.

    Article  Google Scholar 

  7. Miao, G., Himayat, N., Li, G. Y., & Bormann, D. (2008). Energy-efficient design in wireless OFDMA. In Proceedings of the IEEE international communication conference (ICC), Beijing, China, May 2008.

  8. Lim, G., & Cimini, L. J. (2012). Energy-efficient best-select relaying in wireless cooperative networks. In Information sciences and systems (CISS), 2012 46th annual conference on, IEEE, pp. 1–6.

  9. Zhang, S., Chen, Y., & Xu, S. (2010). Improving energy efficiency through bandwidth, power, and adaptive modulation. In Vehicular technology conference fall (VTC 2010-Fall), 2010 IEEE 72nd, pp. 1–5. IEEE, 2010.

  10. Hossain, E., Kim, T., & Bhargava, V. K. (2011). Cooperative cellular wireless networks. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  11. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  12. Hasan, Z., Boostanimehr, H., & Bhargava, V. K. (2011). Green cellular networks: A survey, some research issues and challenges. Communications Surveys & Tutorials, IEEE, 13(4), 524–540.

    Article  Google Scholar 

  13. Ho, C. K., Tan, P. H., & Sun, S. (2013). Energy-efficient relaying over multiple slots with causal CSI. IEEE Journal on Selected Areas in Communications, 31(8), 1–12.

    Article  Google Scholar 

  14. Shaoqing, W., & Jingnan, N. (2010). Energy efficiency optimization of cooperative communication in wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, Article ID 162326, 8 p.

  15. Madan, R., Mehta, N., Molisch, A., & Zhang, J. (2008). Energy-efficient cooperative relaying over fading channels with simplerelay selection. Wireless Communications, IEEE Transactions on, 7(8), 3013–3025.

    Article  Google Scholar 

  16. Feng, D., Jiang, C., Lim, G., Cimini, L. J., Feng, G., & Li, G. Y. (2013). A survey of energy-efficient wireless communications. IEEE Communications Surveys & Tutorials, 15(1), 167–178.

    Article  Google Scholar 

  17. Rankov, B., & Wittneben, A. (2007). Spectral efficient protocols for half-duplex fading relay channels. IEEE Journal on Selected Areas in Communications, 25(2), 379–389.

    Article  Google Scholar 

  18. Ong, L., Kellett, C. M., & Johnson, S. J. (2010). Capacity theorems for the AWGN multi-way relay channel. In Proceedings of the IEEE international symposium on inf. theory (ISIT), Austin, USA, pp. 664–668, Jun, 2010.

  19. Noori, M., & Ardakani, M. (2013). On the achievable rates of symmetric Gaussian multi-way relay channels. EURASIP Journal on Wireless Communications and Networking, 2013(1), 11.

    Article  Google Scholar 

  20. Oechtering, T. J., Jorswieck, E. A., Wyrembelski, R. F., & Boche, H. (2009). On the optimal transmit strategy for the MIMO bidirectional broadcast channel. IEEE Transactions onCommunications, 57(12), 3817–3826.

    Article  Google Scholar 

  21. Hammerstrom, I., Kuhn, M., Esli, C., Zhao, J., Wittneben, A., & Bauch, G. (2007). MIMO two-way relaying with transmit CSI at the relay. In Signal processing advances in wireless communications, 2007. SPAWC 2007. IEEE 8th Workshop on, pp. 1–5. IEEE, 2007.

  22. Gao, J., Vorobyov, S. A., Jiang, H., Zhang, J., & Haardt, M. (2013). Sum-rate maximization with minimum power consumption for MIMO DF two-way relaying: Part I-relay optimization. IEEE Transactions on Signal Processing, 61(14), 3563–3577.

    Article  MathSciNet  Google Scholar 

  23. Gao, J., Vorobyov, S. A., Jiang, H., Zhang, J., & Haardt, M. (2013). Sum-rate maximization with minimum power consumption for MIMO DF two-way relaying: Part II-network optimization. IEEE Transactions on Signal Processing, 61(14), 3578–3591.

    Article  MathSciNet  Google Scholar 

  24. Tabataba, F. S., Sadeghi, P., Hucher, C., & Pakravan, M. R. (2012). Impact of channel estimation errors and power allocation on analog network coding and routing in two-way relaying. IEEE Transactions on Vehicular Technology, 61(7), 3223–3239.

    Article  Google Scholar 

  25. Sun, C., & Yang, C. (2012). Energy efficiency analysis of one-way and two-way relay systems. EURASIP Journal on Wireless Communications and Networking, 1, 1–18.

    Article  Google Scholar 

  26. Sun, C., Cen, Y., & Yang, C. (2013). Energy efficient OFDM relay systems. IEEE Transactions on Commun, 61(5), 1797–1809.

    Article  Google Scholar 

  27. Chinaei, M. H, Omidi, M. J., & Kazemi, J. (2013). Circuit power considered energy efficiency in decode-and-forward relaying. In Electrical engineering (ICEE), 2013 21st Iranian conference on, pp. 1–5. IEEE, 2013.

  28. Cover, T., & Thomas, J. (1991). Elements of information theory. New York: Wiley.

    Book  MATH  Google Scholar 

  29. Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  30. Sang, J. K., Mitran, P., & Tarokh, V. (2008). Performance bounds for bidirectional coded cooperation protocols. Information Theory, IEEE Transactions on, 54(11), 5235–5241.

    Article  Google Scholar 

  31. Nam, W., Chung, S.-Y., & Lee, Y. H. (2008). Capacity bounds for two-way relay channels. Communications, 2008 IEEE international Zurich seminar on. IEEE, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Chinaei.

Appendix

Appendix

In this Appendix, it is explained how (30) can be written as (31) in details. We consider two possible states to clear the proof:

  1. 1.

    If \((2^{{\frac{{2B_{1} }}{{WT_{TWUB} }}}} - 1)/\left| {h_{2} } \right|^{2} \ge (2^{{\frac{{2B_{2} }}{{WT_{TWUB} }}}} - 1)/\left| {h_{1} } \right|^{2}\):

With this assumption (30) is written as:

$$P_{s1\hbox{min} }^{T} + P_{r\hbox{min} }^{T} + P_{s2\hbox{min} }^{T} \ge \frac{{(2^{{\frac{{2B_{1} }}{{WT_{TWUB} }}}} - 1)N_{0} }}{{\left| {h_{1} } \right|^{2} }} + \frac{{(2^{{\frac{{2B_{1} }}{{WT_{TWUB} }}}} - 1)N_{0} }}{{\left| {h_{2} } \right|^{2} }} + \frac{{\left| {h_{1} } \right|^{2} (2^{{\frac{{2B_{1} }}{{WT_{TWUB} }}}} - 1)N_{0} }}{{\left| {h_{2} } \right|^{4} }}.$$
(68)

If we substitute the assumption \(\left| {h_{1} } \right|^{2} /\left| {h_{2} } \right|^{2} \ge (2^{{\frac{{2B_{2} }}{{WT_{TWUB} }}}} - 1)/(2^{{\frac{{2B_{1} }}{{WT_{TWUB} }}}} - 1)\) in (68), the minimum summation of the transmission powers is derived as (31).

  1. 2.

    if \((2^{{\frac{{2B_{1} }}{{WT_{TWUB} }}}} - 1)/\left| {h_{2} } \right|^{2} \le (2^{{\frac{{2B_{2} }}{{WT_{TWUB} }}}} - 1)/\left| {h_{1} } \right|^{2}\):

With this assumption (30) is written as:

$$P_{s1\hbox{min} }^{t} + P_{r\hbox{min} }^{t} + P_{s2\hbox{min} }^{t} \ge \frac{{\left| {h_{2} } \right|^{2} (2^{{\frac{{2B_{2} }}{{WT_{TWUB} }}}} - 1)N_{0} }}{{\left| {h_{1} } \right|^{4} }} + \frac{{(2^{{\frac{{2B_{2} }}{{WT_{TWUB} }}}} - 1)N_{0} }}{{\left| {h_{1} } \right|^{2} }} + \frac{{(2^{{\frac{{2B_{2} }}{{WT_{TWUB} }}}} - 1)N_{0} }}{{\left| {h_{2} } \right|^{2} }}.$$
(69)

If we substitute the assumption \(\left| {h_{2} } \right|^{2} /\left| {h_{1} } \right|^{2} \ge (2^{{\frac{{2B_{1} }}{{WT_{TWUB} }}}} - 1)/(2^{{\frac{{2B_{2} }}{{WT_{TWUB} }}}} - 1)\) in (69), the minimum summation of the transmission powers is obtained as (31).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinaei, M.H., Omidi, M.J., Kazemi, J. et al. Energy efficiency optimization of one-way and two-way DF relaying considering circuit power. Wireless Netw 22, 367–381 (2016). https://doi.org/10.1007/s11276-015-0972-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0972-6

Keywords

Navigation