Skip to main content
Log in

CADMA: collision-avoidance directional medium access for vehicular ad hoc networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Quick and accurate message transmission is an important research topic for vehicular ad hoc networks (VANET). Most studies assume that the periodic broadcast of beacon frames between vehicles increases the safety of the driver. In particular, there has been a lot of research into broadcasting based on carrier sense multiple access with collision avoidance (CSMA/CA) algorithms for medium access. However, the CSMA/CA algorithm is not an optimum technique for the VANET system, due to the transfer delay that occurs in inducing frequent collisions on transmission signals. In this paper, we propose a collision-avoidance directional medium access (CADMA) protocol and infrastructure-utilized clustering method for VANET to support reliable data transfer. In the proposed scheme, the CADMA protocol uses non-competitive transmission methods and cluster heads (CHs) to manage access by allocating the nodes resources. In addition, the roadside unit (RSU) helps with the clustering process. The simulation results indicate that the CADMA can reduce transmission delays and the collision rate of the broadcasting signal, and have shown that the CADMA can be effectively utilized for the VANET systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Berbineau, M., Jonsson, M., Bonnin, J.-M., Cherkaoui, S., AGUADO, M., Rico-Garcia, C., et al. (Eds.). (2013). Communication technologies for vehicles. NewYork: Springer. doi:10.1007/978-3-642-37974-1.

    Google Scholar 

  2. Jing, Z., & Sumit, R. (2003). Mac for dedicated short range communications in intelligent transport system. IEEE Communications Magazine, 41(12), 60–67. doi:10.1109/MCOM.2003.1252800.

    Article  Google Scholar 

  3. Eghbal, H., Alexander, G., Behzad, M., & Djamshid, T. (2014). Survey on location information services for vehicular communication networks. Wireless Networks, 20(5), 1085–1105. doi:10.1007/s11276-013-0666-x.

    Article  Google Scholar 

  4. Hossain, A. K. M. Mahtab, Preechai, M., & Kanchana, K. (2014). Directed information dissemination in vehicular ad-hoc networks. Wireless Networks, 20(5), 899–916. doi:10.1007/s11276-013-0655-0.

    Article  Google Scholar 

  5. Guanglin, Z., Youyun, X., Xinbing, W., Xiaohua, T., Jing, L., Xiao, Y. G., et al. (2012). Multicast capacity for vanets with directional antenna and delay constraint. IEEE Journal on Selected Areas in Communications, 30(4), 818–833. doi:10.1109/JSAC.2012.120515.

    Article  Google Scholar 

  6. Luciano, B., & Marco, D. F. (2007). A cross layered MAC and clustering scheme for efficient Broadcast in VANETs. In Proceedings of IEEE international conference on mobile ad hoc and sensor systems (MASS 07), Pisa, Italy, 18.

  7. Gökhan, K., Eylem, E., & Füsun, Ö. (2009). Supporting real-time traffic in multihop vehicle to infrastructure networks. Transportation Research Part C: Emerging Technologies, 18(3), 376–392. doi:10.1016/j.trc.2009.05.001.

    Google Scholar 

  8. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  9. IEEE P802.11p, D3.0. (2007). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specification: Amendment: Wireless access in vehicular Environment (WAVE), Draft, 3.

  10. IEEE Standard 802.11a. (1999). Wireless LAN medium access control(MAC) and physical layer specifications: High speed physical layer in the \(5\)GHz band.

  11. IEEE Standard 802.11-1999. (Reaff 2003). Wireless LAN medium access control(MAC) and physical layer (PHY) specifications.

  12. Kassotakis, I. E., Markaki, M. E., & Vasilakos, A. V. (2000). A hybrid genetic approach for channel reuse in multiple access telecommunication networks. IEEE Journal on Selected Areas in Communications, 18(2), 234–243.

    Article  Google Scholar 

  13. Xiao, Y., Peng, M., Gibson, J., Xie, G. G., Du, D.-Z., & Vasilakos, A. V. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.

    Article  Google Scholar 

  14. Duarte, P. B. F., Fadlullah, Z. M., Vasilakos, A. V., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.

    Article  Google Scholar 

  15. Flaminio, B., Antonio, C., Matteo, C., & Luigi, F. (2002). RR-ALOHA, a Reliable R-ALOHA broadcast channel for ad-hoc inter-vehicle communication networks. In Proceedings of Med-Hoc-Net 2002.

  16. Hassan, A. O., Weihua, Z., & Li, L. (2013). VeMAC: A TDMA-based MAC protocol for reliable broadcast in VANETs. IEEE Transactions on Mobile Computing, 12(9), 1724–1736. doi:10.1109/TMC.2012.142.

    Article  Google Scholar 

  17. Chong, H., Mehrdad, D., Rahim, T., Xing, L., & Xuemin, S. (2012). A novel distributed asynchronous multichannel MAC scheme for large-scale vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 61(7), 3125–3138. doi:10.1109/TVT.2012.2205596.

    Article  Google Scholar 

  18. Yvonne, G., Bernhard, W., & Hans, P. G. (2007). Cluster-based medium access scheme for VANETs. In Proceedings of IEEE intelligent transportation systems conference(ITSC’2007) (pp. 343–348). Seattle, WA, USA.

  19. Hang, S., & Xi, Z. (2007). Clustering-based multichannel MAC protocols for QoS provisionings over vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 56(6), 3309–3323. doi:10.1109/TVT.2007.907233.

    Article  Google Scholar 

  20. Minming, N., Zhangdui, Z., & Dongmei, Z. (2011). MPBC: A mobility prediction-based clustering scheme for ad hoc networks. IEEE Transactions on Vehicular Technology, 60(9), 4549–4559. doi:10.1109/TVT.2011.2172473.

    Article  Google Scholar 

  21. Ko, Y. B., Shankarkumar, V., & Vaidya, N. F. (2000). Medium Access Control Protocols Using Directional Antennas in Ad Hoc Networks. In IEEE annual joint conference of the IEEE computer and communications societies(INFOCOM’2000) (pp. 13–21). Israel: Tel Aviv.

  22. Ramanathan, R., Redi, J., Santivanez, C., Wiggins, D., & Polit, S. (2005). Ad Hoc Networking With Directional Antennas: A Complete System Solution. IEEE Journal on Selected Areas in Communications, 23(3), 496–506. doi:10.1109/JSAC.2004.842556.

    Article  Google Scholar 

  23. Mineo, T., Jay, M., Aifeng, R., & Rajive, B. (2002). Directional virtual carrier sensing for directional antennas in mobile Ad Hoc Networks. In Proceedings of the ACM international symposium on Mobile ad hoc networking & computing(MobiHoc’2002), Lausanne, Switzerland, 183-193, doi:10.1145/513800.513823.

  24. Kai-Ten, F. (2007). LMA: Location- and mobility-aware medium-access control protocols for vehicular ad hoc networks using directional antennas. IEEE Transactions on Vehicular Technology, 56(6), 3324–3336. doi:10.1109/TVT.2007.906874.

    Article  Google Scholar 

  25. ipuri, A., Ye, S., You, J., & Hiromoto, R.E. (2000). A mac protocol for mobile ad hoc networks using directional antennas. IEEE wireless communications and networking confernce(WCNC’2000), Chicago, IL, USA, 1214-1219, doi:10.1109/WCNC.2000.904804.

  26. Somprakash, B., Siuli, R., & Tetsuro, U. (2006). Enhancing the performance of ad hoc wireless networks with smart antennas. New York: Auerbach Publications.

    Google Scholar 

  27. Romit, R.C., & Nitin, H.V. (2004). Deafness: A mac problem in ad hoc networks when using directional antennas. In Proceedings of IEEE international conference on network protocols(ICNP’2004), Berlin, Germany, 283-292, doi:10.1109/ICNP.2004.1348118.

  28. Korakis, T., Jakllari, G., & Tassiulas, L. (2003). A MAC protocol for full exploitation of directional antennas in ad-hoc wireless networks. In proceedings of the acm international symposium on mobile ad hoc networking and computing(MobiHoc’2003), doi:10.1145/778415.778428.

  29. Ralf, S., Alain, L., Andreas, F., Lars, E., & Wolfgang, E. (2006). Analysis of path characteristics and transport protocol design in vehicular ad hoc networks. In proceedings of ieee vehicular technology conference(VTC’2006-Spring), Melbourne, Australia, 528-532, doi:10.1109/VETECS.2006.1682880.

  30. Ephremides, A., Wieselthier, J. E., & Baker, D. J. (1987). A design concept for reliable mobile radio networks with frequency hopping signaling. Proceedings of the IEEE, 75(1), 56–73. doi:10.1109/PROC.1987.13705.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the 2015 MPEES Advanced Research Center Fund of Myongji University in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheolwoo You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, S., Kim, J. & You, C. CADMA: collision-avoidance directional medium access for vehicular ad hoc networks. Wireless Netw 22, 1181–1197 (2016). https://doi.org/10.1007/s11276-015-1026-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1026-9

Keywords

Navigation