Skip to main content

Advertisement

Log in

Cross layer design in multi-hop networks with adaptive modulation along with constellation rearrangement

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Distributed nature of wireless sensor network raises a number of design challenges, especially when energy-efficiency and Quality of Service requirements are to be taken into consideration. These challenges can only be met by allowing closer cooperation and mutual adaptation between the protocol layers, referred to as a cross-layer design paradigm. In this paper, we explain the operating stages for adaptive sleep with adaptive modulation based on the MAC layer protocol. By using adaptive sleep with adaptive modulation the total time for completing one packet is adaptively reduced. Therefore, not only the transmission time is adapted by adaptive modulation, but also the sleep time is varied by adaptive sleep. A cross-layer, optimization scheme, based on adaptive sleep with adaptive modulation along with constellation rearrangement and power control, is proposed in this paper for minimizing energy cost and enhancing the network longevity. The adaptive sleep with adaptive modulation along with constellation rearrangement algorithm changes the modulation scheme dynamically by using constellation rearrangement while adjusting the node sleep periods and power levels. The paper considers several variations of these schemes and analyzes and compares their performance under various traffic intensity based on extensive computer simulations. Finally the proposed scheme is evaluated through NS2 simulations in terms of throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dargie, W., & Poellabauer, C. (2010). Fundamentals of wireless sensor networks: Theory and practice. New York: Wiley.

    Book  Google Scholar 

  2. Cheng, H., et al. (2012). Nodes organization for channel assignment with topology preservation in multi-radio wireless mesh networks. Ad Hoc Networks, 10(5), 760–773.

    Article  Google Scholar 

  3. Li, M., et al. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  4. Wei, G., et al. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communication, 34(6), 793–802.

    Article  Google Scholar 

  5. Movassaghi, S., et al. (2014). Body area networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1658–1686.

    Article  Google Scholar 

  6. Liu, X.-Y., et al. (2014). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197. doi:10.1109/TPDS.2014.2345257.

    Article  Google Scholar 

  7. Wang, X., et al. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20. doi:10.1007/s11036-011-0316-4.

    Article  Google Scholar 

  8. Song, Y., et al. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  9. Xu, X., et al. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNs. ACM Transactions on Sensor Networks (TOSN), 11(3), 1–25.

    Article  Google Scholar 

  10. Duarte, P. B. F., Zubair, M., Fadlullah, A. V., & Vasilakos, N. K. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.

    Article  Google Scholar 

  11. Bora, G., et al. (2014). OSI reference model: An overview. International Journal of Computer Trends and Technology (IJCTT), 7(4), 214–218.

    Article  MathSciNet  Google Scholar 

  12. Han, K., et al. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.

    Article  Google Scholar 

  13. Sheng, Z., et al. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.

    Article  Google Scholar 

  14. Vasilakos, A., et al. (2012). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  15. Xiao, Y., et al. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.

    Article  Google Scholar 

  16. Chen, Y., Qin, F., Xing, Y. & Buranapanichkit, D. (2014). Cross-layer optimization scheme using cooperative diversity for reliable data transfer in wireless sensor networks. International Journal of Distributed Sensor Networks, 2014, Article ID 714090. doi:10.1155/2014/714090.

  17. Chilamkurti, N., Zeadally, S., Vasilakos, A., & Sharma, V. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors, 2009, Article ID 134165. doi:10.1155/2009/134165.

  18. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  19. Tannenbaum, A. S. (2003). Computer networks (4th ed.). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  20. Kim, J., et al. (2009). A simple SNR representation method for AMC schemes of MIMO systems with ML detector. IEEE Transactions on Communications, 57(10), 2971–2976.

    Article  Google Scholar 

  21. Chen, H., et al. (2013). QoS-based cross-layer scheduling for wireless multimedia transmissions with adaptive modulation and coding. IEEE Transactions on Communications, 61(11), 4526–4538.

    Article  Google Scholar 

  22. Yen, Y.-S., et al. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modeling, 53(11–12), 2238–2250.

    Article  Google Scholar 

  23. Vasilakos, A., et al. (2003). Optimizing QoS routing in hierarchical ATM networks using computational intelligence techniques. Systems, Man, and Cybernetics, Part C: IEEE Transactions on Applications and Reviews, 33(3), 297–312.

    Article  Google Scholar 

  24. Jiang, T., et al. (2012). QoE-driven channel allocation schemes for multimedia transmission of priority-based secondary users over cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30(7), 1215–1224.

    Article  Google Scholar 

  25. Kassotakis, I. E., Markaki, M. E., & Vasilakos, A. V. (2000). A hybrid genetic approach for channel reuse in multiple access telecommunication networks. IEEE Journal on Selected Areas in Communications, 18(2), 234–243.

    Article  Google Scholar 

  26. Intanagonwiwat, C., et al. (2003). Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking, 11(1), 2–16.

    Article  Google Scholar 

  27. Chang, J., & Tassiulas, L. (2004). Maximum lifetime routing in wireless sensor networks. IEEE/ACM Transactions on Networking, 12(4), 609–619.

    Article  Google Scholar 

  28. Meng, T., et al. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE TMC. doi:10.1109/TC.2015.2417543.

    Google Scholar 

  29. Yao, Y., Cao, Q., & Vasilakos, A.V. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In IEEE 10th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS), 2013 (pp. 182–190). Hangzhou: IEEE.

  30. Yao, Y., et al. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.

    Article  Google Scholar 

  31. Zeng, Y., et al. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  32. Marwaha, S., et al. (2004). Evolutionary fuzzy multi-objective routing for wireless mobile ad hoc networks. IEEE Congress on Evolutionary Computation CEC2004, 2, 1964–1971. doi:10.1109/CEC.2004.1331137.

    Google Scholar 

  33. Perillo, M., & Heinzelman, W. (2004). DAPR: A protocol for wireless sensor networks utilizing an application-based routing cost. IEEE Wireless Communications and Networking Conference (WCNC), 3, 1540–1545.

    Google Scholar 

  34. Youssef, M., et al. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  35. Liu, Y., et al. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

  36. Busch, C., et al. (2012). Approximating congestion+ dilation in networks via “Quality of Routing” games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  37. Dvir, A., et al. (2010). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 40(4), 405–406. doi:10.1145/1851275.1851233.

    Article  Google Scholar 

  38. Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. C. M. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.

    Article  Google Scholar 

  39. Luo, H., et al. (2006). Adaptive data fusion for energy efficient routing in wireless sensor networks. IEEE Transactions on Computers, 55(10), 1286–1299.

    Article  Google Scholar 

  40. Xiang, L., et al. (2011). Compressed data aggregation for energy efficient wireless sensor networks. SECON, 2011, 46–54.

    Google Scholar 

  41. van Greunen, J., Petrovic, D., Bonivento, A., Rabaey, J., Ramchandran, K., & Vincentelli, A. S. (2004). Adaptive sleep discipline for energy conservation and robustness in dense sensor networks. IEEE International Conference on Communications, 6, 3657–3662. doi:10.1109/ICC.2004.1313225.

    Google Scholar 

  42. Sengupta, S., et al. (2012). An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 42(6), 1093–1102.

    Article  Google Scholar 

  43. Nandi, A., & Kundu, S. (2010). Energy level performance of packet delivery schemes in wireless sensor networks in presence of Rayleigh fading channel. In IEEE International Conference on Computational Intelligence and Communication Networks (CICN) (pp. 220–225).

  44. Zuo, J., et al. (2014). Cross-layer aided energy-efficient opportunistic routing in ad hoc networks. IEEE Transactions on Communications, 62(2), 522–535.

    Article  Google Scholar 

  45. Peng, L., et al. (2012). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. INFOCOM, 2012, 100–108.

    Google Scholar 

  46. Li, P., et al. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  47. Bahadori-Jahromi, F., et al. (2013). Concatenation of space-time block codes with constellation rearrangement. Arabian Journal for Science and Engineering, 38(10), 2703–2712.

    Article  Google Scholar 

  48. Bahadori-Jahromi, F., et al. (2014). Performance of cooperative spatial multiplexing SISO/MIMO communication systems with constellation rearrangement technique. Arabian Journal for Science and Engineering, 39(2), 1067–1078.

    Article  Google Scholar 

  49. Goldsmith, A. J., & Varaiya, P. P. (1997). Capacity of fading channels with channel side information. IEEE Transactions on Information Theory, 43(6), 1986–1992.

    Article  MathSciNet  MATH  Google Scholar 

  50. Alkhudairi, K. I. (2005). Transmit diversity analyses for M-QAM in Rician fading channels. M.S. Thesis, Dept. Elect. Eng, KING SAUD Univ. http://ksu.edu.sa/sites/KSUArabic/Deanships/Grad/EnglishAbstracts/TRANSMIT%20DIVERSITY%20ANALYSES%20FOR%20MQAM%20IN%20RICIAN%20FADING%20CHANNELS.pdf.

  51. Jurdak, R., et al. (2010). Radio sleep mode optimization in wireless sensor networks. IEEE Transactions on Mobile Computing, 9(7), 955–968.

    Article  Google Scholar 

  52. Chung, S. T., & Goldsmith, A. J. (2001). Degrees of freedom in adaptive modulation: A unified view. IEEE Transactions on Communications, 49(9), 1561–1571.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Bahadori-Jahromi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahadori-Jahromi, F., Pourmina, M.A. Cross layer design in multi-hop networks with adaptive modulation along with constellation rearrangement. Wireless Netw 22, 1401–1414 (2016). https://doi.org/10.1007/s11276-015-1027-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1027-8

Keywords

Navigation