Skip to main content

Advertisement

Log in

NODIC: a novel distributed clustering routing protocol in WSNs by using a time-sharing approach for CH election

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Due to the battery limitations, energy-efficient routing is one of the most important issues in WSNs. In this paper, a novel distributed clustering routing protocol (NODIC) is proposed. The algorithm makes three main contributions to literature. Firstly, a time-sharing approach for CH election is suggested differently from the studies in literature. The most effective parameters are combined in a time-sharing approach on the purpose of gaining the highest performance. Secondly, easy implementation and self-reliant decision of probabilistic schemes and the guarantee that iterative schemes issue about selecting the desired CHs are pieced together without using any of them. Finally, since CH decision is performed locally and dynamically, the clusters can make their decisions independently from the others. NODIC is compared with three common corresponding approaches in literature for various values of the number of nodes and under different traffic distributions. The algorithms are evaluated by using the number of living nodes and total energy consumptions per round. The results show that NODIC performs considerably better than the other approaches for all number of nodes and under all distributions up to 79 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Singh, S. K., Singh, M. P., & Singh, D. K. (2010). Routing protocols in wireless sensor networks—A survey. International Journal of Computer Science & Engineering Survey (IJCSES), 1, 63–83.

    Article  Google Scholar 

  2. Li, M., Li, Z., & Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  3. Naeimi, S., Ghafghazi, H., Chow, C. O., & Ishii, H. (2012). A survey on the taxonomy of cluster-based routing protocols for homogeneous wireless sensor networks. Sensors, 12(6), 7350–7409.

    Article  Google Scholar 

  4. Wei, G., Ling, Y., Guo, B., Xiao, B., & Vasilakos, A. V. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman filter. Computer Communications, 34(6), 793–802.

    Article  Google Scholar 

  5. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In 2013 IEEE 10th international conference on mobile ad-hoc and sensor systems (MASS) (pp. 292–190), IEEE.

  6. Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.

    Article  Google Scholar 

  7. Zeng, Y., Li, D., & Vasilakos, A. V. (2013). Real-time data report and task execution in wireless sensor and actuator networks using self-aware mobile actuators. Computer Communications, 36(9), 988–997.

    Article  Google Scholar 

  8. Xiao, Y., Peng, M., Gibson, J., Xie, G. G., Du, D. Z., & Vasilakos, A. V. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. Mobile Computing, IEEE Transactions on, 11(10), 1538–1554.

    Article  Google Scholar 

  9. Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp. 46–54), IEEE.

  10. Chilamkurti, N., Zeadally, S., Vasilakos, A., & Sharma, V. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors, 2009, 1–9.

    Article  Google Scholar 

  11. Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

  12. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers, PP(99). doi:10.1109/TC.2015.2417543.

  13. Marwaha, S., Srinivasan, D., Tham, C. K., & Vasilakos, A. (2004). Evolutionary fuzzy multi-objective routing for wireless mobile ad hoc networks. In Congress on evolutionary computation, 2004 (CEC2004) (vol. 2, pp. 1964–1971), IEEE.

  14. Liu, X. Y., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., & Wu, M. Y. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.

    Article  Google Scholar 

  15. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. Communications Surveys & Tutorials, IEEE, 16(1), 92–109.

    Article  Google Scholar 

  16. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In INFOCOM, 2012 Proceedings of the IEEE (pp. 100–108), IEEE.

  17. Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  18. Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.

    MathSciNet  Google Scholar 

  19. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion + dilation in networks via quality of routing&# x201D; games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  20. Xu, X., Ansari, R., Khokhar, A., & Vasilakos, A. V. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNs. ACM Transactions on Sensor Networks (TOSN), 11(3), 45.

    Article  Google Scholar 

  21. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. Parallel and Distributed Systems, IEEE Transactions on, 25(12), 3264–3273.

    Article  Google Scholar 

  22. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE TMC,. doi:10.1109/TC.2015.2417543.

    Google Scholar 

  23. Liu, X. (2012). A survey on clustering routing protocols in wireless sensor networks. Sensors, 12(8), 11113–11153.

    Article  Google Scholar 

  24. Sikander, G., Zafar, M. H., Raza, A., Babar, M. I., Mahmud, S. A., & Khan, G. M. (2013). A survey of cluster-based routing schemes for wireless sensor networks. SmartCR, 3(4), 261–275.

    Article  Google Scholar 

  25. Hussain, K., Abdullah, A. H., Awan, K. M., Ahsan, F., & Hussain, A. (2013). Cluster head election schemes for WSN and MANET: A survey. World Applied Sciences Journal, 23(5), 611–620.

    Google Scholar 

  26. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference (p. 10), Maui, HI, USA.

  27. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions Wireless Communications, 1, 660–670.

    Article  Google Scholar 

  28. Peng. D., & Zhang, Q. (2010). An energy efficient cluster-routing protocol for wireless sensor networks. In Proceedings of the international conference on computer design and applications (ICCDA2010) (pp. V2-530–V532-533), Qinhuangdao, China.

  29. Jing, C., & Hong, S. (2008). Meleach-l: More energy-efficient leach for large-scale Wsns, WIRELESS COMMUNICATIONS. In Proceedings of the 4th international conference on networking and mobile computing (WiCOM 2008) (pp. 1–4), Dalian, China.

  30. Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad-hoc sensor networks. IEEE Transactions Mobile Computing, 3, 366–379.

    Article  Google Scholar 

  31. Zhang, H. Z., Chen, P. P., & Gong, S. L. (2010). Weighted spanning tree clustering routing algorithm based on leach. In Proceedings of the 2nd international conference on future computer and communication (ICFCC 2010) (pp. V2-223–V222-227), Wuhan, China.

  32. Bian, X. X., Liu, X. C., & Cho, H. (2008). Study on a cluster-chain routing protocol in wireless sensor networks. In Proceedings of the 3rd international conference on communications and networking (ChinaCom 2008) (pp. 964–968), Hangzhou, China.

  33. Ding, P., Holliday, J., & Celik, A. (2005). Distributed energy efficient hierarchical clustering for wireless sensor networks. In Proceedings of the 8th IEEE international conference on distributed computing in sensor systems (DCOSS) (pp. 322–339), Marina Del Rey, CA, USA.

  34. Prabhu, S. B., Mahalakshmi, R., Nithya, S., & Sophia, S. (2013). A review of energy efficient clustering algorithm for connecting wireless sensor network fields. International Journal of Engineering Research and Technology, 2(4), 477–481.

    Google Scholar 

  35. Rashed, M., Kabir, M. H., Rahim, M. S., & Ullah, S. E. (2012). Cluster based hierarchical routing protocol for wireless sensor network. arXiv preprint arXiv:1207.3876.

  36. Zhu, X., Shen, L., & Yum, T. S. P. (2009). Hausdorff clustering and minimum energy routing for wireless sensor networks. IEEE Transactions on Vehicular Technology, 58(2), 990–997.

    Article  Google Scholar 

  37. Kandris, D., Tsioumas, P., Tzes, A., Nikolakopoulos, G., & Vergados, D. D. (2009). Power conservation through energy efficient routing in wireless sensor networks. Sensors, 9(9), 7320–7342.

    Article  Google Scholar 

  38. Varga, A. (2001). The OMNeT++ discrete event simulation system. In Proceedings of the European simulation multiconference (ESM’2001), 9(S 295) (p. 65).

  39. Tohma, K., Aydin, M. N., & Abasikeles-Turgut, I. (2015). Improving the LEACH protocol on wireless sensor network. In 23th Signal processing and communications applications conference (SIU) (pp. 240–243), IEEE.

Download references

Acknowledgments

We would like to thank the Scientific and Technological Research Council of Turkey (TÜBİTAK-EEEAG—115E211) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İpek Abasıkeleş-Turgut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abasıkeleş-Turgut, İ., Hafif, O.G. NODIC: a novel distributed clustering routing protocol in WSNs by using a time-sharing approach for CH election. Wireless Netw 22, 1023–1034 (2016). https://doi.org/10.1007/s11276-015-1045-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1045-6

Keywords

Navigation