Skip to main content
Log in

Cluster based emergency message broadcasting technique for vehicular ad hoc network

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Broadcasting is one of the major emergency services of Vehicular ad hoc network, since the number of vehicles increases every day. Because of the high density of the vehicles, it is necessary to broadcast emergency messages to all the vehicles to avoid traffic jam and vehicle accidents. Reliable broadcasting of messages in self-organizing Ad hoc networks is a promising research field. In this paper a cluster based emergency message broadcasting algorithm is proposed. In this regard we have proposed cluster based architecture for emergency message dissemination and collision avoidance in VANET. In this paper, first the formation of cluster is done in such a way that it avoids any kind of collision. Once cluster head is selected it takes the responsibility of intra cluster management to avoid interference between the clusters. To increase the reliability during emergency message dissemination two MAC layer broadcasts protocol is used. This assures that message is delivered on time without any hazards. The proposed model is simulated for DSDV, AODV, and DSR protocols with the standards 802.11 and 802.11p in SHWM, Manhattan and freeway mobility models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fußler, H., Mauve, M., Hartenstein, H., Kasemann, M., & Vollmer, D. (2003). Mobicom poster: location based routing for vehicular ad-hoc networks. SIGMOBILE Mobile Computing and Communications Review, 7, 47–49.

    Article  Google Scholar 

  2. Selvaretnam, B., Wong, K. (2004). Handling the inter-vehicular communications challenge—A survey. In The ninth international conference on communication systems, ICCS (pp. 86–90).

  3. Fonsecan, A., & Vazao, T. (2013). Applicability of position-based routing for VANET in highways and urban environments. Journal of Network and Computer Applications, 36(3), 961–973.

    Article  Google Scholar 

  4. Xiong, H., Chen, Z., & Li, F. (2012). Efficient and multi-level privacy-preserving communication protocol for VANET. Computers & Electrical Engineering, 38, 573–581.

    Article  Google Scholar 

  5. Vasilakos, A., et al. (2012). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  6. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). EDAL: An energy efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In Proceedings of the IEEE 10th international conference on Mobile ad-hoc and sensor systems (MASS) (pp. 182–190).

  7. Zhou, L., et al. (2011). Distributed media services in P2P-based vehicular networks. IEEE Transactions on Vehicular Technology, 60(2), 692–703.

    Article  MathSciNet  Google Scholar 

  8. Nishanth, R. B., Ramakrishnan, B., & Selvi, M. (2015). Improved signcryption algorithm for information security in networks. International Journal of Computer Networks and Applications (IJCNA), 2(3), 151–157.

    Google Scholar 

  9. Kumar, N., Chilamkurti, N., & Rodrigues, J. J. P. C. (2014). Learning automata-based opportunistic data aggregation and forwarding scheme for alert generation in vehicular ad hoc networks. Computer Communications, 39, 22–32.

    Article  Google Scholar 

  10. Xiang, X.,Qin, W., & Xiang, B. (2014). Research on a DSRC-based rear-end collision warning model. IEEE Transactions on Intelligent Transportation Systems 15(3), 1054–1065.

    Article  Google Scholar 

  11. Sheng, Z., et al. (2013). A survey on the ietf protocol suite for the internet of things: standards, challenges, and opportunities. Wireless Communications, IEEE, 20(6), 91–98.

    Article  Google Scholar 

  12. Xiao, Y., et al. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. Mobile Computing, IEEE Transactions on, 11(10), 1538–1554.

    Article  Google Scholar 

  13. He, Y., et al. (2013). Semi-random backoff: Towards resource reservation for channel access in wireless LANs. IEEE/ACM Transactions on Networking (TON), 21(1), 204–217.

    Article  Google Scholar 

  14. Demestichas, P., et al. (2004). Service configuration and traffic distribution in composite radio environments. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 34(1), 69–81.

    Article  Google Scholar 

  15. Wei, G., et al. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communications, 34(6), 793–802.

    Article  Google Scholar 

  16. Attar, A., et al. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.

    Article  Google Scholar 

  17. Zhou, L., et al. (2011). Joint forensics-scheduling strategy for delay-sensitive multimedia applications over heterogeneous networks. IEEE Journal on Selected Areas in Communications, 29(7), 1358–1367.

    Article  Google Scholar 

  18. Vasilakos, A. et al. (1998). Evolutionary-fuzzy prediction for strategic QoS routing in broadband networks. In: Proceedings of the IEEE international conference on fuzzy systems (vol. 2, pp. 1488–1493).

  19. Zhang, X. M., et al. (2015). Interference-based topology control algorithm for delay-constrained mobile Ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

  20. Liu, L., et al. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.

    MathSciNet  Google Scholar 

  21. Ramakrishnan, B., Rajesh, R. S., & Namesh, C. (2010). A study on service procedure in clustered vehicular communication. International Journal of Advanced Research in Computer Science, 1(4), 535–542.

    Google Scholar 

  22. Ramakrishnan, B. (2010). Analytical study of cluster and sans cluster vehicular adhoc network communication. International Journal of Computer Engineering and Information Technology, 25(1), 01–11.

    MathSciNet  Google Scholar 

  23. Duarte, P. B. F., et al. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.

    Article  Google Scholar 

  24. Meng, T., et al. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers,. doi:10.1109/TC.2015.2417543.

    Google Scholar 

  25. Jiau, M.-K., et al. (2015). Multimedia services in cloud-based vehicular networks. Intelligent Transportation Systems Magazine, IEEE, 7(3), 62–79.

    Article  Google Scholar 

  26. Rahimi, M. R., et al. (2012). MAPCloud: Mobile applications on an elastic and scalable 2-tier cloud architecture. In: IEEE/ACM UCC (pp. 83–90).

  27. Rahimi, M. R., et al. (2013). MuSIC: Mobility-aware optimal service allocation in mobile cloud computing. In IEEE CLOUD 2013 (pp. 75–82).

  28. Rahimi, M. R., et al. (2014). Mobile cloud computing: A survey, state of art and future directions. MONET, 19(2), 133–143.

    Google Scholar 

  29. Shen, Z., et al. (2011). Peer-to-peer media streaming: Insights and new developments. Proceedings of the IEEE, 99(12), 2089–2109.

    Article  MathSciNet  Google Scholar 

  30. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  31. Vasilakos, A. V., Li, Z., Simon, G., & You, W. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.

    Article  Google Scholar 

  32. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating Congestion + Dilation in Networks via “Quality of Routing” Games. IEEE Transanctions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  33. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  34. Yen, Y.-S., Chao, H.-C., Chang, R.-S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11–12), 2238–2250.

    Article  Google Scholar 

  35. Spyropoulos, T., Rais, R. N. B., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  36. Ramakrishnan, B., Rajesh, R. S., & Shaji, R. S. (2010). An efficient vehicular communication outside the city environments. International Journal of Next-Generation Networks (IJNGN), 2(4), 1.

    Article  Google Scholar 

  37. Ruiz, P., Dorronsoro, B., Bouvry, P., & Tardón, L. (2012). Information dissemination in VANETs based upon tree topology. Ad Hoc Networks, 10, 111–127.

    Article  Google Scholar 

  38. Marina, M. K., & Das, S. R. (2002). Ad hoc on-demand multipath distance vector routing. ACM SIGMOBILE Mobile Computing and Communications Review, 6(3), 969–988.

    Article  Google Scholar 

  39. Li, D., Huang, H., Li, X., Li, M., Tang, F. (2007). A distance-based directional broadcast protocol for urban vehicular ad hoc network. In International conference on wireless communications, networking and mobile computing, WiCom (pp. 1520–1523).

  40. Tonguz, O., Wisitpongphan, N., Bai, F., Mudalige, P., Sadekar, V. (2007). Broadcasting in VANET. In Mobile networking for vehicular, environments (pp. 7–12).

  41. Tonguz, O., Wisitpongphan, N., & Bai, F. (2010). DV-CAST: A distributed vehicular broadcast protocol for vehicular ad hoc networks. IEEE Wireless Communications, 17(2), 47–57.

    Article  Google Scholar 

  42. Bai, S., Huang, Z., Kwak, D., Lee, S., Oh, H., Jung, J. (2009). Vehicular multi-hop broadcasting protocol for safety message dissemination in VANETs. In Proceedings of IEEE 70th vehicular technology conference fall (VTC 2009-Fall), Anchorage, AK (pp. 1–5).

  43. Slavik, M., Mahgoub, I. (2010). Stochastic broadcast for vanet. In 7th IEEE consumer communications and networking conference (CCNC), Las Vegas, (pp. 1–5).

  44. Mylonas, Y., Lestas, M., Pitsillides, A. (2008). Speed adaptive probabilistic flooding in cooperative emergency warning. In WICON’08: Proceedings of the 4th annual international conference on wireless internet (pp. 1–7).

  45. Huang, C.-M., Tu, L., Chou, C.-H. (2009). Rewarn: An opportunistic relay scheme for cooperative collision warning in VANETs. In IEEE 20th international symposium on personal, indoor and mobile radio communications, Tokyo (pp. 3030–3034).

  46. Wang, X., et al. (2012). A survey of green mobile networks: Opportunities and challenges. MONET, 17(1), 4–20.

    Google Scholar 

  47. Youssef, M., et al. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  48. Nasir, M. K., Hossain, A. S. M. D., Hossain, M. S., Hasan, M. M., & Ali M. B. (2013). Security challenges and implementation mechanism for vehicular ad hoc network. International Journal of Scientific & Technology Research, 2(4), 156–161.

    Google Scholar 

  49. Chaqfeh, M., Lakas, A., & Jawhar, I. (2014). A survey on data dissemination in vehicular ad hoc networks. Vehicular Communications, 1(4), 214–225.

    Article  Google Scholar 

  50. Chitra, M., & Sathya, S. S. (2013). Efficient broadcasting mechanisms for data dissemination in vehicular ad hoc networks. International Journal of Mobile Network Communications & Telematics (IJMNCT), 3(3), 214–225.

    Google Scholar 

  51. Daeinabi, A., & Rahbar, A. G. (2014). An advanced security scheme based on clustering and key distribution in vehicular ad-hoc networks. Computers & Electrical Engineering, 40(2), 517–529.

    Article  Google Scholar 

  52. Mershad, K., Artail, H., & Gerla, M. (2012). ROAMER: Roadside Units as message routers in VANETs. Ad Hoc Networks, 10, 479–496.

    Article  Google Scholar 

  53. Ramakrishnan, B. (2009). Performance analysis of AODV routing protocol in Vehicular ad-hoc network service discovery architecture. Network 13(14), 65–72.

    Google Scholar 

  54. Ramakrishnan, B., Sreedivya, S. R., & Selvi, M. (2015). Adaptive routing protocol based on cuckoo search algorithm (ARP-CS) for secured vehicular ad hoc network (VANET). International Journal of Computer Networks and Applications (IJCNA), 2(4), 173–178.

    Google Scholar 

  55. Ramakrishnan, B., Rajesh, R. S., & Shaji, R. S. (2011). Analysis of routing protocols for highway model without using roadside unit and cluster. International Journal of Scientific & Engineering Research, 2(1), 1–9.

    Article  Google Scholar 

  56. Chuang, M.-C., & Chen, M. C. (2013). Deep: Density-aware emergency message extension protocol for vanets. IEEE Transactions on Wireless Communications, 12(10), 4983–4993.

    Article  Google Scholar 

  57. Jiang, T., et al. (2012). QoE-driven channel allocation schemes for multimedia transmission of priority-based secondary users over cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30(7), 1215–1224.

    Article  Google Scholar 

  58. Zhou, J., et al. (2015). Seure and privacy preserving protocol for cloud-based vehicular DTNs. IEEE Transactions on Information Forensics and Security, 10(6), 1299–1314.

    Article  Google Scholar 

  59. Viriyasitavat, W., et al. (2015). Vehicular communications: Survey and challenges of channel and propagation models vehicular technology magazine. IEEE, 10(2), 55–66.

    Google Scholar 

  60. Yang, M., et al. (2015). Software-defined and virtualized future mobile and wireless networks: A survey. MONET, 20(1), 4–18.

    MathSciNet  Google Scholar 

  61. Liu, X.-Y., et al. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.

    Article  Google Scholar 

  62. Zhou, L., et al. (2010). Context-aware middleware for multimedia services in heterogeneous networks. IEEE Intelligent Systems, 25(2), 40–47.

    Article  Google Scholar 

  63. Acampora, G., et al. (2010). Interoperable and adaptive fuzzy services for ambient intelligence applications. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 5(2), 8.

    Google Scholar 

  64. Quan, W., Xu, C., Vasilakos, A. V., Guan, J., Zhang, H., Grieco, L. A. (2014). TB2F: Tree-bitmap and bloom-filter for a scalable and efficient name lookup in content-centric networking. In Proc. Of the IEEE conference on Networking (IFIP), pp. 1–9.

  65. Xia, F., Liu, L., Li, J., Ma, J., & Vasilakos, A. V. (2015). Socially aware networking: A survey. IEEE Systems Journal, 9(3), 904–921.

    Article  Google Scholar 

  66. Umedu, T., Isu, K., Higashino, T., & Toh, C. K. (2010). An inter vehicular communication protocol for distributed detection of dangerous vehicles. IEEE Transactions on Vehicular Technology, 59(2), 627–637.

    Article  Google Scholar 

  67. Ramakrishnan, B., Rajesh, D. R. S., & Shaji, R. S. (2010). An intelligent routing protocol for vehicle safety communication in highway environments. Journal of Computing, 2(11), 65–72.

    Google Scholar 

  68. Yang, X., Liu, J., & Zhao, F. (2004). A vehicle-to-vehicle communication protocol for cooperative collision warning. IEEE MobiQuitous 114–123.

  69. Furda, A., & Vlacic, L. (2011). Enabling safe autonomous driving in realworld city traffic using multiple criteria decision making. Intelligent Transportation Systems Magazine, IEEE, 3(1), 4–17.

    Article  Google Scholar 

  70. Dvir, A., et al. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.

    Google Scholar 

  71. Yan, Z., et al. (2014). A survey on trust management for Internet of Things. Journal of Network and Computer Applications, 42, 120–134.

    Article  Google Scholar 

  72. Mohapatra, P., Chao, G., & Li, J. (2004). Group communications in mobile ad hoc networks. Computer, 37(2), 52–59.

    Article  Google Scholar 

  73. Tseng, Y.-C., Ni, S.-Y., Chen, Y.-S., & Sheu, J.-P. (2002). The broadcast storm problem in a mobile ad hoc network. ACM Wireless Networks, 8(2), 153–167.

    Article  MATH  Google Scholar 

  74. Jing, Q., et al. (2014). Security of the Internet of Things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.

    Article  Google Scholar 

  75. Maslekar, N., Boussedjra, M., Mouzna, J., & Houda, L. (2009). Direction based clustering algorithm for data dissemination (DBCADD) in vehicular networks. In Vehicular Networking Conference (VNC), 2009 IEEE.

  76. Schwartz, R. S., Barbosa, R. R. R., Meratnia, N., Heijenk, G., & Scholten, H. (2011). A directional data dissemination protocol for vehicular environments. Computer Communications, 34, 2057–2071.

    Article  Google Scholar 

  77. Chuany, M. C., & Chen, M. C. (2013). DEEP: Density aware emergency message extension protocol for vanets. Wireless Communications, IEEE Transactions on, 12(10), 4983–4993.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the UGC, Hyderabad (F-MRP- 5345/14(SERO/UGC) dated march 2014) for a part of this work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ramakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishnan, B., Bhagavath Nishanth, R., Milton Joe, M. et al. Cluster based emergency message broadcasting technique for vehicular ad hoc network. Wireless Netw 23, 233–248 (2017). https://doi.org/10.1007/s11276-015-1134-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1134-6

Keywords

Navigation