Skip to main content
Log in

A probability based stable routing for cognitive radio adhoc networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Cognitive Radio is devised as a wireless communication technology that enables user to communicate without having a fixed pre assigned radio spectrum. The technology facilitates the utilization of temporarily unused portion of radio frequency in the licensed spectrum region. Since its invention, researchers have carried out their investigation in various directions like spectrum sensing, spectrum allocation, routing etc. In this paper, a routing mechanism is proposed for cognitive radio adhoc network named as proposed stable routing (PSR). The proposed algorithm constructs path from source to destination considering the probability of stability of the selected channel. The channel is considered stable if the probability that the channel would be claimed by the concerned primary user during the operation of secondary user is comparatively low. PSR is simulated in ns-2 and compared with Cognitive AODV (CAODV) protocol. Observation shows that PSR outperforms CAODV in terms of route survival time, routing overhead and packet loss rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Khan, M. A., Tembine, H., & Vasilakos, A. V. (2012). Game dynamics and cost of learning in heterogeneous 4G networks. IEEE Journal on Selected Areas in Communications, 30(1), 198–213.

    Article  Google Scholar 

  2. Vasilakos, A. V., Li, Z., Simon, G., & You, W. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.

    Article  Google Scholar 

  3. Quan, W., Xu, C., Vasilakos, A. V., Guan, J., Zhang, H., & Grieco, L. A. (2014). TB2F: Tree-bitmap and bloom-filter for a scalable and efficient name lookup in content-centric networking. In IFIP networking (pp. 1–9), Trondheim.

  4. Yang, M., Li, Y. L., Jin, D., Zeng, L., Wu, X., & Vasilakos, A. V. (2015). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications, 20(1), 4–18.

    Article  Google Scholar 

  5. Zen, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 61–173.

    Google Scholar 

  6. Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., & Kwon, T. T. (2012). A survey of green mobile networks: Opportunities and challenges. MONET, 17(1), 4–20.

    Google Scholar 

  7. Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  8. Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired algorithm for the Steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.

    MathSciNet  Google Scholar 

  9. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (2012). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  10. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In Proceedings of INFOCOM (pp. 100–108), Orlando, FL.

  11. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel & Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  12. Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.

    Google Scholar 

  13. Spyropoulos, T., Rais, R. N. B., Turletti, T., Obraczka, K., & Vasilakos, A. V. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  14. Zhang, X. M., Hina, H., Zhang, Y., Yan, F., & Vasilakos, A. V. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

  15. Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2012). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

  16. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). EDAL: An energy-efficient, delayaware, and lifetime-balancing data collection protocol for wireless sensor networks. In MASS (pp. 182–190).

  17. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion + dilation in networks via “quality of routing” games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  18. Yen, Y.-S., Chao, H.-C., Chang, R.-S., & Vasilakose, A. V. (2011). Flooding-limited and multi constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11–12), 2238–2250.

    Article  Google Scholar 

  19. Vasilakose, A. V., Saltouros, M. P., Atlassis, A. F., & Pedrycz, W. (2003). Optimizing QoS routing in hierarchical ATM networks using computational intelligence techniques. IEEE Systems, Man, and Cybernetics, Part C: Applications and Reviews, 33(3), 297–312.

    Article  Google Scholar 

  20. FCC. (2002). Spectrum Policy Task Force Report. ET docket no. 02-155.

  21. Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication (Elsevier), 4(1), 40–62.

    Article  Google Scholar 

  22. Cheng, G., Liu, W., Li, Y., & Cheng, W. (2007). Joint on-demand routing and spectrum assignment in cognitive radio networks. In Proceedings of IEEE international conference on communications (pp. 6499–6503), Glassgow, Scotland.

  23. Khalifé, H., Malouch, N., & Fdida, S. (2009). Multihop cognitive radio networks: To route or not to route. IEEE Network, 23(4), 20–25.

    Article  Google Scholar 

  24. Mitola, J., & Maguire, G. Q, Jr. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communication, 6(4), 13–18.

    Article  Google Scholar 

  25. Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio. Ph.D Thesis, Doctor of Technology, Royal Inst. Technol. (KTH), Stockholm, Sweden.

  26. Rahul, H., Kushman, N., Katabi, D., Sodini, C., & Edalat, F. (2008). Learning to share: Narrowband-friendly wideband networks. SIGCOMM Computer Communication Review, 38(4), 147–158.

    Article  Google Scholar 

  27. Harada, H. (2008). A small-size software defined cognitive radio prototype. In Proceedings of 19th IEEE symposium on personal, indoor and mobile radio communications (pp. 1–5), Cannes, Franch.

  28. Dai, Y., & Wu, J. (2012). Distributed rerouting for multiple sessions in cognitive radio networks. In Proceedings of IEEE 11th international conference on trust, security and privacy in computing and communications (TrustCom) (pp. 1529–1536), Liverpool, United Kingdom.

  29. Dutta, N., & Sarma, H. K. D. (2014). A stable route selection algorithm for cognitive radio networks. In Proceedings of IEEE 4th international conference on advances in computing, communications and informatics (pp. 1168–1174), New Delhi, India.

  30. Cesana, M., Cuomo, F., & Ekici, E. (2011). Routing in cognitive radio networks: Challenges and solutions. Ad Hoc Networks, 9(3), 228–248.

    Article  Google Scholar 

  31. Wang, B., & Ray Liu, K. J. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.

    Article  Google Scholar 

  32. Lopez, D., Chu, X., Vasilakos, A. V., & Claussen, H. (2014). Power minimization based resource allocation for interference mitigation in OFDMA femtocell networks. IEEE Journal on Selected Areas in Communications, 32(2), 333–344.

    Article  Google Scholar 

  33. Wu, F., Yang, Z., Chen, G., & Vasilakos, A. V. (2015). Spatial reusability-aware routing in multi-hop wireless networks. In IEEE TMC.

  34. Duarte, P. B. F., Fadlullah, Z. M., Vasilakos, A. V., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.

    Article  Google Scholar 

  35. López-Pérez, D., Chu, X., Vasilakos, A. V., & Claussen, H. (2013). On distributed and coordinated resource allocation for interference mitigation in self-organizing LTE networks. IEEE/ACM Transactions on Networks, 21(4), 1145–1158.

    Article  Google Scholar 

  36. Byun, S.-S., Balashingham, I., Vasilakos, A. V., & Lee, H.-N. (2014). Computation of an equilibrium in spectrum markets for cognitive radio networks. IEEE Transactions on Computers, 63(2), 304–316.

    Article  MathSciNet  Google Scholar 

  37. Chakravarthy, V., Li, X., Wu, Z., Temple, M. A., Garber, F., Kannan, R., & Vasilakos, A. V. (2009). Novel overlay/underlay cognitive radio waveforms using SD-SMSE framework to enhance spectrum efficiency—Part I: Theoretical framework and analysis in AWGN channel. IEEE Transactions on Communications, 57(12), 3794–3804.

    Article  Google Scholar 

  38. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilako, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  39. Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. C. M. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. In Proceedings of the IEEE (Vol. 100(12), pp. 3172–3186).

  40. Cacciapuoti, A.S., Calcagno, C., Caleffi, M., & Paura, L. (2010). CAODV: Routing in mobile ad-hoc cognitive radio networks. In Proceedings of IFIP wireless days (pp. 1–5), Venice, Italy.

  41. Chowdhury, K. R., & Felice, M. D. (2009). Search: A routing protocol for mobile cognitive radio ad-hoc networks. Computer Communications, 32(18), 1983–1997.

    Article  Google Scholar 

  42. Habak, K., Abdelatif, M., Hagrass, H., Rizc, K., & Youssef, M. (2013). A location-aided routing protocol for cognitive radio networks. In Proceedings of international conference on computing, networking and communications (pp. 729–733), San Diego, USA.

  43. Perkins, C. E., & Royer, E. M. (1999). Ad-hoc on-demand distance vector routing. In Proceedings of the 2nd IEEE workshop on mobile computer systems and applications (pp. 90–100), New Orleans, LA.

  44. Abedi, O., & Berangi, R. (2014). Beaconless dynamic spectrum-aware routing protocol for cognitive radio adhoc networks. Arabian Journal of Science and Engineering, 39(5), 3941–3952.

    Article  Google Scholar 

  45. Singh, J. S. P., Singh, R., Rai, M. K., Singh, J., & Kang, A. S. (2015). Cooperative sensing for cognitive radio: A powerful access method for shadowing environment. Wireless Personal Communication, 80(4), 1363–1379.

    Article  Google Scholar 

  46. Sun, Y., & Chowdhury, K. R. (2014). Enabling emergency communication through cognitive radio vehicular network. IEEE Communication Magazine, 52(10), 68–75.

    Article  Google Scholar 

  47. Zhu, G.-M., Akyildiz, I., & Kuo, G.-S. (2008). STOD-RP: A spectrum-tree based on-demand routing protocol for multi-hop cognitive radio networks. In Proceedings of IEEE global telecommunications conference (pp. 1–5), New Orleans, LA.

  48. Xin, C., Xie, B., & Shen, C. C. (2005). A novel layered graph model for topology formation and routing in dynamic spectrum access networks. In Proceedings of 1st IEEE international symposium on new frontiers in dynamic spectrum access networks (pp. 308–317), Baltimore, USA,.

  49. Xin, C., Ma, L., & Shen, C. C. (2008). A path-centric channel assignment framework for cognitive radio wireless networks. Mobile Networks and Applications, 13(5), 463–476.

    Article  Google Scholar 

  50. Page, L. B. (2006). Regular Markov chains: Steady state probability distributions. https://fenix.tecnico.ulisboa.pt/downloadFile/3779579688473/6.3.pdf.

  51. Simulation tool “ns-2 Cognitive Radio Extension”, Tool for CRN simulation in ns-2. http://stuweb.ee.mtu.edu/ljialian

  52. Chiang, K.-H., & Shenoy, N. (2004). A 2-D random-walk mobility model for location-management studies in wireless networks. IEEE Transactions on Vehicular Technology, 53(2), 413–424.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitul Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, N., Sarma, H.K.D. A probability based stable routing for cognitive radio adhoc networks. Wireless Netw 23, 65–78 (2017). https://doi.org/10.1007/s11276-015-1138-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1138-2

Keywords

Navigation