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Abstract—We study algorithms for carrier and rate allocation
in cellular systems with distributed components such as a het-
erogeneous LTE system with macrocells and femtocells. Existing
work on LTE systems often involves centralized techniques
or requires significant signaling, and is therefore not always
applicable in the presence of femtocells. More distributed CSMA-
based algorithms (carrier-sense multiple access) were developed
in the context of 802.11 systems and have been proven to be
utility optimal. However, the proof typically assumes a single
transmission rate on each carrier. Further, it relies on the CSMA
collision detection mechanisms to know whether a transmission
is feasible.

In this paper we present a framework for LTE scheduling that
is based on CSMA techniques. In particular we first prove that
CSMA-based algorithms can be generalized to handle multiple
transmission rates in a multi-carrier setting while maintaining
utility optimality. We then show how such an algorithm can be
implemented in a heterogeneous LTE system where the existing
Channel Quality Indication (CQI) mechanism is used to decide
transmission feasibility.

I. INTRODUCTION

Interference mitigation is a fundamental problem in wireless
networks. The exact method for handling interference depends
on the nature of the network, e.g. whether it is a centrally
controlled cellular network or a more unstructured ad-hoc net-
work. For cellular networks interference can be mitigated via
techniques such as power-control, frequency reuse, and fine-
grained rate control based on channel-quality measurements
together with some aspect of central planning. On the other
hand, for ad-hoc networks, especially those running the 802.11
protocol, interference is typically mitigated by a distributed
collision-based random access scheme, perhaps coupled with
a fairly coarse-grained rate-adaptation procedure.

In this paper we are concerned with interference mitiga-
tion in cellular systems with distributed components such
as heterogeneous 4G LTE systems that include small cells.
Small cells are basestations that aim to provide high data rate
coverage over a small high-traffic area. For example, picocells
are owned by a cellular provider and placed on public locations
such as lamp posts. Alternatively, femtocells are owned by an
end-user with the aim of improving coverage in a private home
or business. An important property of femtocells is that they
can operate in Closed Subscriber Group (CSG) mode in which
the basestation restricts the set of mobile terminals that can
connect to it. Another effect introduced by femtocells is that
interference to macrocell users can now come from a femtocell

in the interior of the macrocell itself, not just from neighboring
macrocells.

LTE networks with small cells represent a hybrid of tradi-
tional cellular networks and traditional ad-hoc networks. On
the one hand, basestations are running the full LTE protocols
which allows for the many interference mitigation schemes
that these protocols provide. On the other hand, the placement
of picocells and femtocells in an LTE network is likely to be
unstructured and so the interference configurations are likely
to resemble a typical ad-hoc configuration. As a consequence,
there is no hope for any centralized planning, which is a
possibility for cellular network interference mitigation tech-
niques such as frequency reuse. We therefore need distributed
algorithms.

We are interested in scheduling algorithms for a heteroge-
neous system that consists of a mixture of macrocells and
small cells. We wish to determine the channels, or carriers,
used by each basestation as well as the transmission rate on
each channel. This should be done in order to maximize a
utility function associated with the system. Although a number
of scheduling algorithms have been proposed in the LTE
context, many of them require a non-trivial amount of signal-
ing among the transmitters. For example, in some algorithms
a scheduling decision is preceded by a calculation of how
the decision would affect the overall system utility, e.g. by
exchanging partial derivative information between neighboring
transmitters. This is difficult to support in heterogeneous
networks with small cells due to the complexity of setting
up the necessary communication channels.

Our main result is to show that LTE scheduling in heteroge-
neous networks can be performed using techniques developed
in the context of 802.11 networks. These networks utilize
a Carrier-Sense Multiple Access (CSMA) protocol, often
enhanced with a Request-to-Send/Clear-to-Send (RTS/CTS)
mechanism [11]. In this setup, transmitters sense the channel
before transmitting and proceed only if no conflicting trans-
missions are active.

The attractiveness of this framework is that CSMA schedul-
ing algorithms can achieve optimal throughputs without any
explicit signaling. Coordination is implicit in the “collision”
mechanism defined by the CSMA mechanism. In particular,
Jiang and Walrand showed in [10] that such mechanisms can
be used to achieve any set of feasible throughputs. Among
the sequence of papers that followed, Liu et al.[14] presented
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utility-optimal algorithms for CSMA networks with a single
carrier and single transmission rate. Two subsequent papers
discussed implementation issues associated with these algo-
rithms [13] and presented an extension to the case of a single
transmission rate on multiple carriers [15]. However, to the
best of our knowledge no previous work has looked at how
such techniques can be applied in the LTE context.

A number of issues arise if we are to use CSMA-based
scheduling algorithms for LTE. First, LTE networks utilize an
OFDM physical layer which consists of multiple transmission
rates over multiple carriers realized by multiple adjustable
power levels. Hence, in addition to deciding when to transmit
on each carrier as in [10], [14], [15], the scheduler now
also chooses the power level used and the transmission rate.
Second, LTE networks do not have an explicit carrier sense
mechanism to detect conflicting transmissions. We need to
build this capability via the existing Channel Quality In-
dication (CQI) mechanism. Lastly, each basestation in an
LTE network typically has its own local scheduler, such as
Proportional Fair, that governs the transmissions to the users
within the cell. We need a mechanism that allows the existing
local scheduler to work with the CSMA-based algorithm.

The main result of this paper is a scheduling algorithm
for utility maximization in heterogeneous LTE networks. Our
methodology is motivated by the CSMA analysis of [14].
We believe our main contribution is in showing that the
analysis can be adapted for the case of multiple per-carrier
transmission rates and powers, and (perhaps more importantly)
describing how the algorithms can be implemented using the
CQI mechanism present in LTE.

We begin with a more abstract version of the algorithm in
which details of the interference are abstracted away into a
feasibility region for the transmissions. Many of the existing
CSMA algorithms implicitly work with this notion. We ini-
tially assume an “oracle” that informs a transmitter whether
a potential transmission would disrupt existing transmissions.
The later sections of the paper discuss how to realize such
a scheme in a heterogeneous LTE system in practice. We
structure the paper as follows.

• In Section II we present an abstract model of a multi-
carrier system that allows for multiple transmission rates
on each carrier. This model assumes that each transmitter
knows whether a potential transmission is feasible.

• In Sections III-IV we adapt the Liu et al. single-carrier
single-rate utility maximization algorithm for CSMA to
the abstract framework of Section II to address the
general case of multiple transmission rates on multiple
carriers.

• In Sections V and VI we give a concrete model for het-
erogeneous LTE networks with small cells, in which we
address power level and interference directly instead of
via the notion of a feasibility region for transmission. We
also discuss practical issues such as CQI-based collision
detection and incorporating a local scheduler.

• In Section VII we present simulation results.

• In Section VIII we give an overview of past work on
scheduling and resource allocation in cellular and 802.11
networks.

II. ABSTRACT MODEL

We begin by describing an abstract model that captures the
notion of multiple transmission rates on multiple carriers and
variable-power scheduling. We consider a system in which a
set of transmitters communicate to a set of receivers via a set
of links L on a set of carriers C at transmission rates from
a set R of positive numbers. Each link is associated with a
transmitter and a receiver, where multiple links may share a
common transmitter but each link corresponds one-to-one with
a receiver.

We solve a scheduling problem, i.e. at each time instant
we specify for every carrier the links that are transmitting
on that carrier together with the associated transmission rates.
More precisely, we represent a schedule on a carrier c ∈ C
by a vector (r0, . . . , rL−1) ∈ RL0 where l = |L| and R0 =
R ∪ {0}. Such a schedule is feasible if it can be realized by
an appropriate power allocation so that every link ` ∈ L can
transmit from its transmitter to its receiver at rate r` on carrier
c simultaneously. A scheduling algorithm describes a schedule
for every carrier c ∈ C at every time instant. Note that a link
is allowed to simultaneously transmit on multiple carriers.

This abstract model captures interference and power assign-
ments by the notion of a feasibility region, which consists
of all valid schedules. In the next two sections we describe
our basic algorithmic framework in this abstract model for
which we do not concern ourselves with how the system
knows whether a schedule is feasible but simply assume an
oracle that indicates whether a potential transmission leads
to feasibility. As mentioned before, for 802.11 networks this
can be approximately realized by CSMA techniques coupled
with RTS/CTS messages. In later sections we describe how
the oracle can be realized in an LTE heterogeneous network.

We consider the problem of system utility maximization. In
particular let γ`,c indicate the transmission rate on link ` on
carrier c. For a given concave utility function U(·) we wish to
maximize the aggregate utility over all links, i.e. to maximize∑
` U(

∑
c γ`,c). Note that for each link the utility function

is applied to the total transmission rate on the link over all
carriers. This coupling between the carriers implies that we
cannot simply treat each carrier as an isolated system.

A formal version of the optimization problem is given
below. Consider a schedule m ∈ Nc where Nc is the set
of feasible schedules on carrier c. If πm ∈ [0, 1] indicates
the fraction of time that m occurs and r`,m indicates the
transmission rate on ` under schedule m, then γ`,c can be
viewed as a weighted sum of r`,m where πm serves as the
weight. Throughout the paper, notations such as ~γ indicate a



Algorithm III.1 RANDACC(〈`, r, c〉, λ, µ, T )
• ` : link
• r : rate
• c : carrier
• λ : channel access rate
• µ : expected transmission duration
• T : time frame

t← beginning of T
while t ∈ T do
x← randomly drawn from Exp(λ)
t← t+ x
if 〈`, r, c〉 leads to config. in Nc then
x← randomly drawn from Exp(1/µ)
` transmits on c at r during (t, t+ x]
t← t+ x

vector (γ`,c)`∈L,c∈C . We wish to solve:

max f1(~γ) =
∑
`∈L

U(
∑
c

γ`,c) (1)

s.t. γ`,c ≤
∑
m∈Nc

r`,mπm ∀`, c∑
m∈Nc

πm = 1 ∀c.

We can view this as an extension of the formulation of [15]
that allows for multirate transmissions (and implicitly variable
transmission powers).

In reality the sets L and Nc can change over time due to
mobility. However, as in common in the literature we assume
that this happens on a slow enough timescale that it makes
sense to solve the utility maximization problem for the current
network configuration.

III. MULTI-CARRIER, MULTI-RATE SCHEDULING
ALGORITHM

We first describe a routine RANDACC (in Figure Algo-
rithm III.1), a continuous-time random access algorithm that
determines when a transmission will take place. We use
〈`, r, c〉 to denote the transmission on link ` ∈ L on carrier
c ∈ C at rate r ∈ R. Each transmission 〈`, r, c〉 is associated
with two parameters, λ`,r,c the channel access rate and µ`,r,c
which represents the expected transmission duration. After an
exponentially distributed waiting period with mean 1/λ`,r,c,
RANDACC checks whether 〈`, r, c〉 leads to a valid schedule
in Nc at that time instant. If yes, the transmission starts
immediately and lasts for an exponentially distributed time
period with mean µ`,r,c. Note that an invalid schedule includes
the situation in which ` conflicts with itself, namely ` already
transmits on c, or ` conflicts with another link on c, both of
which are captured by Nc. Note also that since RANDACC
operates in a continuous manner, two links make a scheduling
decision simultaneously with zero probability and therefore
they make conflicting decisions with zero probability.

Algorithm III.2 MMUO
for each time frame f do

for each link `, carrier c and rate r do
RANDACC(〈`, r, c〉, λ`,r,c[f ], µ`,r,c[f ], f )

for each ` do
update service received S`[f ]
update virtual queue q`[f + 1] according to (2)

for each `, c and r do
update λ`,r,c[f +1] and µ`,r,c[f +1] according to (3)

The algorithm MMUO (multi-carrier multi-rate utility op-
timization) approximates a solution to (1) as follows (see
Algorithm III.2). Time is divided into frames of fixed duration.
During each frame f , each potential transmission 〈`, r, c〉 calls
the RANDACC routine with parameters λ`,r,c[f ] and µ`,r,c[f ].

At the end of each frame, link ` calculates the service
received during the frame (denoted by S`[f ]), and updates
a virtual queue size parameter (denoted by q`[f ]) as follows.

q`[f + 1] =
[
q`[f ] + b[f ] ·

(
U ′−1(q`[f ]/V )− S`[f ]

)]qmax

qmin

(2)

In the above equation, b is a step size function that satisfies
property (A1) (defined later), qmax and qmin are bounds on the
virtual queue size, and [x]qmax

qmin
= min(qmax,max(qmin, x)).

The positive parameter V controls the accuracy of the algo-
rithm.

The values of λ`,r,c[f ] and µ`,r,c[f ] stay unchanged during
each frame f , and are updated to λ`,r,c[f+1] and µ`,r,c[f+1]
at the end of frame f , so that

λ`,r,c[f + 1] · µ`,r,c[f + 1] = exp(r · q`[f + 1]). (3)

As we shall see in (4) the performance of RANDACC depends
on the product of λ and µ. The choice of this product is
explained in the proof of Theorem 4.

IV. ANALYSIS

We now show that the MMUO algorithm leads to an optimal
solution to (1). The proof builds upon the following optimality
properties of RANDACC that were shown in [10] for the
special case of one carrier and 0/1 transmission rates.

A. RANDACC for 0/1 Rates

Suppose each link ` ∈ L calls RANDACC with parameters
(λ`, µ`) over a sufficiently long time frame. Let ~λ = (λ`)`∈L
and let ~µ = (µ`)`∈L. Let m~λ,~µ(t) be the schedule at time t
under the RANDACC routine. Recall r`,m is the transmission
rate on link ` under schedule m. In this case r`,m ∈ {0, 1}.

Lemma 1 ([12]). The sequence of schedules m~λ,~µ(t) for t ≥
0 form a continuous time reversible Markov Chain with the
following stationary distribution.

π
~λc,~µc
m =

Π`:r`,m=1λ` · µ`∑
m′ Π`:r`,m′=1λ` · µ`

∀m,

where Π`∈∅(·) = 1.



Further, the resulting link throughput γ
~λ,~µ
` =∑

m π
~λc,~µc
m r`,m is optimal for every link ` ∈ L in the

following sense. We say that a link throughput vector ~γ is
feasible if there exist πm such that γ` <

∑
m∈Nc

rl,mπm.

Lemma 2 ([10]). For any feasible link throughput vector ~γ,
there exists ~λ and ~µ such that

γ` ≤ γ
~λ,~µ
` .

B. MMUO
For multiple transmission rates on multiple carriers, the gen-

eralization from Lemma 1 to Corollary 3 is straight-forward.
This is because RANDACC that runs on one carrier does not
interfere with that on a different carrier. Further, each rate-link
pair can be treated as a distinct link. For a particular carrier
c, let vectors ~λc = (λ`,r,c)`∈L,r∈R and ~µc = (µ`,r,c)`∈L,r∈R.
Recall Nc is the set of feasible schedules on carrier c.

Corollary 3. The schedule sequence m~λc,~µc(t) for t ≥ 0 is a
continuous time reversible Markov Chain with the following
stationary distribution.

π
~λc,~µc
m =

Π`:r`,m>0λ`,r`,m,c · µ`,r`,m,c∑
n∈Nc

Π`:r`,n>0λ`,r`,n,c · µ`,r`,n,c
∀m ∈ Nc (4)

The above expression shows that the stationary distribution
only depends on the product of the parameters λ and µ.
Whenever MMUO invokes RANDACC, it does so with λ and
µ parameters that are set according to (3). For any vector of
virtual queues ~q = (q`)`∈L, we denote by π~q the resulting
distribution on Nc from the RANDACC routine. From (4) we
have,

π~qm =
exp

(∑
`:r`,m>0 r`,m · q`

)
∑
m′∈Nc

exp
(∑

`:r`,m′>0 r`,m′ · q`
) ∀m ∈ Nc (5)

The resulting link throughput is therefore,

γ~q`,c =
∑
m∈Nc

π~qmr`,m ∀`, c (6)

For utility optimization, our goal is to show that the virtual
queues under MMUO converge to a vector ~q∗ so that the above
link throughput under ~q∗ maximizes the utility as defined
in (1). Note that for this problem we cannot treat each carrier
in isolation since the throughput of a link is aggregated
over all carriers. Note also that the optimization problem
(7) in Theorem 4 differs from that of (1) in its objective
function, but shares the same constraints. The motivation of
this reformulation is to obtain a more useful set of KKT
conditions. Further, Theorem 4 will state that the optimal
values of the two objective functions can be arbitrarily close.
The main result of this section is captured in the following
theorem. It relies on two standard but technical assumptions
(A1) and (A2) which we detail below.

Theorem 4. Under assumptions (A1) and (A2), for any initial
condition ~q[0], MMUO converges in the following sense.

lim
f←∞

~q[f ] = ~q∗

where ~q∗ and ~γ∗ are such that (~γ∗, ~π~q
∗
) is the solution to the

following convex optimization problem over ~γ and ~π.

max f2(~γ, ~π) =

V
∑
`∈L

U(
∑
c

γ`,c)−
∑
c

∑
m∈Nc

πm log πm (7)

s.t. γ`,c ≤
∑
m∈Nc

r`,mπm ∀`, c∑
m∈Nc

πm = 1 ∀c.

Further, if ~γ† is the optimal solution to (1), then

|f1(~γ∗)− f1(~γ†)| ≤ |C| log | ∪c Nc|/V (8)

The assumptions of Theorem 4 are:
(A1)

∑∞
f=0 b[f ] =∞ and

∑∞
f=0 b

2[f ] <∞.
(A2) If ~po ∈ <L+ is a solution to

U ′−1(p`/V )−
∑
c

∑
m∈Nc

r`,mπ
~p
m = 0 ∀` ∈ L

then qmin ≤ po` ≤ qmax for all ` ∈ L.
The parameters b[·] will only be used in the analysis, not in
the algorithm itself. In addition, the parameters qmin and qmax

are under our control. Hence for any problem instance we can
make sure that Assumptions (A1) and (A2) hold.

Proof: There are several steps in the proof. In the first
two steps we follow the framework of [14] to show that
the dynamics of MMUO can be captured by a system of
differential equations. In the third step we must deviate from
the approach of [14] in order to handle multiple transmission
rates on multiple carriers.

We begin by replacing the discrete time frames of MMUO
with a more convenient continuous interpolation. For notation
we use square brackets [·] indexed with integers f for discrete
sequences defined on frames f , and we use round brackets (·)
indexed with real numbers t for a continuous scaled version of
time. For the discrete time sequence of virtual queue vectors
~q[f ] for integral frames f = 1, 2, . . . , we define as follows
its continuous interpolation ~q(t) for all real positive numbers
t. We also define a continuous version S`(t) for the discrete
service sequence S`[f ]. For f = 1, 2, . . . , let tf =

∑f
i=1 b[i].

For t ∈ [tf , tf+1), let

q`(t) = q`[f ] · tn+1 − t
tn+1 − tn

+ q`[f + 1] · t− tn
tn+1 − tn

S`(t) = S`[f ]

(In other words the continuous time process t is created from
the discrete time frames scaled by the intervals [tf , tf+1).)

The following lemma is shown in [14] and says that the
continuous sequence ~q(t) converges to the solution of the
system of stochastic differential equations (9) which can be
viewed as a continuous version of (2). The equations are
stochastic due to the term S`(t) which is the result of the
stochastic process of MMUO.



Lemma 5 ([14]). Let ~p∗ be the solution to the following system
of differential equations with variable ~p = (p)`∈L.

ṗ` =
[
U ′−1(p`/V )− S`(t)

]
· 1p`∈[qmin,qmax], (9)

where 1p`∈[qmin,qmax] is an indicator variable for whether p` is
in the range of [qmin, qmax]. Fix any time instant τ . If ~p∗(τ) =
~q(τ), then limτ→∞ supt∈[τ,τ+T ] ‖~p∗(t)− ~q(t)‖ = 0.

The second step of the proof says that any fixed point
of the stochastic system (9) will also be a fixed point of
an associated deterministic system of equations. Note that
the RANDACC routine may not converge to the stationary
distribution of (4), or equivalently (5), with the given λ and
µ parameters within each frame before the parameters are
updated to their respective new values for the next frame.
Hence the service S`(t) in the above differential equations is a
stochastic quantity. In other words, when MMUO invokes the
RANDACC routine, if each frame f is sufficiently long, S`(t)
would converge to its long-term average

∑
c

∑
m∈Nc

r`,m ·π~qm
and we could replace the stochastic term S`(t) in (9) by its
long term average. This would result in the following system
(10). Unfortunately, in reality, the frame f may not be long
enough. However, the following result still allows us to say
that systems (9) and (10) are closely related, regardless of the
convergence of RANDACC. As we shall see, (10) also provides
a connection to solving (7) via the KKT conditions.

Lemma 6 ([14]). Every limit point of system (9) is almost
always a fixed point of the following system.

ṗ` =
[
U ′−1(p`/V )−

∑
c

∑
m∈Nc

r`,m · π~pm
]
· 1p`∈[qmin,qmax],

∀` ∈ L, (10)

where π~pm is defined in (5).

In the third step of the proof we show that the system
(10) leads to a solution of the optimization problem (7). (It
effectively solves the problem via the subgradient method).
For this step we must deviate from the analysis of [14] in
order to handle the multi-carrier and multi-rate aspects of (7).
In particular, the Lagrangian of (7) is given by:

L(~γ, ~π : ~ν, ~η)

=
∑
`∈L

(
V · U(

∑
c

γ`,c)−
∑
c

ν`,cγ`,c

)

+
∑
c

(∑
`∈L

ν`,c
∑
m∈Nc

r`,mπm −
∑
m∈Nc

πm log πm

)

−
∑
c

ηc

( ∑
m∈Nc

πm − 1

)
.

.

Hence the KKT conditions for (7) are:

V U ′(
∑
c

γ`,c) = ν`,c ∀`, c (11)

−1− log πm +
∑
`

r`,mν`,c − ηc = 0 ∀m ∈ Nc,∀c(12)

γ`,c ≤
∑
m∈Nc

r`,mπm ∀`, c (13)

ν`,c × (γ`,c −
∑
m∈Nc

r`,mπm) = 0 ∀`, c (14)

ν`,c ≥ 0 ∀`, c (15)∑
m∈Nc

πm − 1 = 0 ∀c (16)

Inequalities (11) and (12) state the gradient of the Lagrangian
L(~γ, ~π : ~ν, ~η) is zero with respect to the variables ~γ and
~π. Inequalities (13), (14) and (15) state that the first set of
constraints of (7) hold and has zero duality gap. The last
equality (16) states the second set of constraints of (7) hold.

We introduce a new variable ~p = (p)`∈L and set the primary
variables via

πm = π~pm as in (5) ∀m

and the dual variables via

ν`,c = p` ∀`, c

ηc = log

( ∑
m∈Nc

exp(
∑
`

r`,mq`)

)
− 1 ∀c.

We can see that the KKT conditions (12), (15) and (16) are
easily satisfied due to the definition of π~pm in (5) and as long
as ~p ∈ <L+.

We next aim to satisfy the remaining KKT conditions (11),
(13) and (14) via the subgradient method. From (11), (14) and
the fact that ν`,c is set to p`, we wish to have,

p` × (U ′−1(p`/V )−
∑
c

∑
m∈Nc

r`,mπ
~p
m) = 0. ∀`

If this does not hold (and hence we are not yet at optimality),
the standard subgradient method updates the p` according to
the following system of differential equations.

ṗ` = U ′−1(p`/V )−
∑
c

∑
m∈Nc

r`,mπ
~p
m. (17)

Due to the convexity of the problem (7) the system (17) will
eventually converge to a fixed point, ~p∗. Note that the system
(17) is identical to (10) as long as p` ∈ [qmin, qmax] for all
` ∈ L. Due to assumption (A2) and the definition of ν`,c,
the solution to the dual of (7) without the constraint p` ∈
[qmin, qmax] falls in the range of [qmin, qmax] and is therefore
equivalent to the fixed point ~p∗ of the system (17).

With ~p∗ chosen, KKT condition (11) is satisfied. We now
set

γ`,c =
∑
m∈Nc

π~p
∗

m r`,m ∀`, c,



which satisfy the remaining conditions of (13) and (14).
Finally, since

f2(~γ∗, ~π∗) ≥ f2(~γ†, ~π†)

f1(~γ∗) ≤ f1(~γ†)

and the entropy
∑
m πm log πm ≤ log | ∪c Nc|, the proof of

Theorem 4 is complete.
We conclude by briefly summarizing in what sense we

have shown that MMUO is optimal. We have shown that
an appropriate continuous interpolation of the virtual queue
dynamics approaches in the limit a vector ~p∗ that defines an
optimal dual solution of (7) (via the KKT conditions). Via
(3) the optimal virtual queue sizes determine channel access
parameters λ`,r,c and µ`,r,c for which the corresponding link
throughputs provide an optimal primal solution to problem (7).

V. A MORE CONCRETE MODEL: HETEROGENEOUS LTE
SYSTEM

In this section we present a more concrete model for the
scheduling problem so that it more closely matches resource
allocation in LTE heterogeneous networks.

We begin with a brief system description. We consider
downlink transmissions from a set of basestations to a set of
mobile users in a time-slotted system. We assume an OFDM-
based air interface in which the spectrum is divided into a set
of carriers called resource blocks (RBs), each of which can
be scheduled separately. For example a 20MHz LTE system
is typically divided into 100 resource blocks. In the time
dimension a time slot corresponds to a Transmission Time
Interval (TTI) which has a typical duration of 1ms in an LTE
system.

We consider a heterogeneous network in which the bases-
tations are divided into two classes, namely macrocells and
femtocells. (For ease of description we use the terms “macros”
and “femtos”. However, our discussions also apply directly
to networks with picocells.) Macros typically have a much
higher max transmit power than femtos, since macrocells
provide wide-area coverage, whereas femtocells (which may
be privately owned) provide focused coverage in one specific
location, e.g. a house or apartment. At any time instant
each mobile user associates with one basestation. Each macro
accepts an association with any mobile user. A femto however
may be in “Closed Subscriber Group” mode (CSG) and only
accept an association with a small subset of users. We remark
that femtos have two notable effects that are departures from
traditional cellular networks. First, they may create strong
interference to a macrocell from within the cell itself, whereas
in a macro-only network interference to a cell mostly comes
from outside that cell. Second, a mobile user may not be able
to associate with the basestation with the strongest signal if the
basestation is a femto in CSG mode and cannot associate with
the user. We assume that each mobile user associates with the
basestation for which the received signal is strongest, among
those that the user is able to associate with.

Unlike in the abstract model, we address basestation power
allocation and interference directly instead of via the notion

of feasibility regions. For basestation i, let Ui be the set of
associated users. To abuse notation, we also use Ui to denote
the set of links that are incident to i as there is a one-to-one
correspondence between the users and links.

The maximum transmit power pi for basestation i is given
and fixed. The scheduling problem is how to distribute pi
among the resource blocks c ∈ C and among the users
in Ui. Let pi,c(t) be the power allocation of pi on re-
source block c at time t; let pi,c,j(t) be the allocation
of pi,c(t) on user j ∈ Ui. Note

∑
c pi,c(t) ≤ pi, and{

pi,c,j(t) = pi,c(t) for one j ∈ Ui
pi,c,j′(t) = 0 for j′ 6= j

. That is, pi,c is

allocated entirely to one chosen user j ∈ Ui.
Power settings and transmission rates are related through the

channel quality information (CQI). CQI values are defined on
pairs of links and resource blocks. During every time slot t,
the values of CQIc,`(t) for all c ∈ C and ` ∈ Ui are reported
to basestation i. We assume that each basestation has perfect
CQI reporting.

Let rc,`(t) be the transmission rate along link ` on carrier
c during time slot t. Specifically, for link ` = ij between the
basestation i and the associated user j, we define

rc,`(t) = wc · F (pi,c,j(t) · CQIc,`(t)) (18)

CQIc,`(t) =
gijc(t)

Nc +
∑
i′ 6=i pi′cgi′jc(t)

(19)

In (19), gijc represents the path loss between i and j on
resource block c, and Nc is the background noise on c. Both
gijc and Nc depend on c since radio propagation conditions
and background interference may be different on different
frequencies. The product of pi,c,j and CQIc,` is commonly
referred to as signal-to-interference-plus-noise ratio, SINR.
(We can therefore think of CQIc,` as the SINR for a unit
power transmission.) In (18), wc is the bandwidth of resource
block c and F (·) represents spectral efficiency as a function
of SINR. For example F (·) could be a suitably discretized
version of the Shannon function log(1 + x). We assume that
F (·) is such that rc,` is always a member of a discrete set
R∪ {0}.

The primary scheduling decision is to determine the power
levels pi,c. In the literature this problem is sometimes known
as inter-cell interference coordination (ICIC). The secondary
scheduling decision is to allocate pi,c to the user-level power
pi,c,j . Typically, each basestation in an LTE network has its
own local scheduler for user-level allocation, in which case the
scheduling freedom is at the inter-cell level. For concreteness
we assume the local scheduler uses the Proportional Fair (PF)
algorithm. In the following section we give details on how
to allocate pi,c and pi,c,j . For user-level allocation pi,c,j , we
consider two cases depending on whether a local scheduler
exists.

VI. IMPLEMENTATION

In Section III we described the utility-optimal MMUO
algorithm for the abstract model. In this section we present



MMUO-based heuristics for the LTE resource allocation prob-
lem in heterogeneous networks. We address a number of
issues. First, scheduling decisions need to be made in slotted
time rather than in continuous time as in MMUO. Second,
scheduling decisions are about setting power levels rather than
transmission rates as in MMUO. Third, we discuss how to
incorporate a local scheduler such as Proportional Fair. Fourth,
perhaps most significantly, we show CQI-based methods for
feasibility detection. This replaces the feasibility oracle and
the CSMA collision detection mechanism. Lastly, since the
basestations are divided into two classes, macro and femto,
interference can be reduced by not having every basestation
compete on every resource block.

We begin with a basic heuristic that bypasses the last
two issues. We then describe three methods through which
feasibility can be detected in practice. We conclude with a
modified heuristic in which macros and femtos have priority
on different sets of resource blocks.

A. Basic Heuristic

Our basic heuristic works very much in the spirit of MMUO.
To address the first issue regarding slotted time each frame
now consists of an integral number of time slots. When the
subroutine RANDACC is called with parameters λ and µ, the
time between transmission attempts (resp. the transmission
period) is drawn from a geometric distribution with mean
1/λ (resp. mean µ). One problem is that two links may make
decisions during the same time slot. We can set the 1/λ values
large enough so that this rarely happens. If this does happen we
assume that both conflicting transmissions cease. A detailed
explanation of how rare collisions affect the performance of
utility-optimal CSMA was given in [14] and we can apply a
similar analysis to MMUO.

The output of MMUO, as described above, specifies the
transmission rate rc,`(t) for every transmission 〈`, r, c〉 that
takes place during time slot t. To obtain power settings,
equation (18) provides the direct translation from transmission
rates to power levels.

pi,c,j(t) =
F−1(rc,`(t)/wc)

CQIc,`(t)
, for link ` = ij. (20)

For a given basestation i and resource block c, the feasibility
oracle guarantees that one user j ∈ Ui has positive power
allocation pi,c,j(t). Let pi,c(t) = pi,c,j(t) for this user j. The
transmission now takes place as long as

∑
c pi,c(t) ≤ pi. This

addresses the second issue.
If it is the case that we can specify both user-level as

well as inter-cell power allocations, we are done. However,
as discussed in Section V, in many instances we only have
the freedom for specifying pi,c since the user-level power is
determined by a local scheduler such as the Proportional Fair
(PF) algorithm. In this case we run the MMUO algorithm “in
the background” to compute the pi,c values and then determine
which user in Ui receives the transmission power pi,c using
the PF algorithm. (We remark that once the power levels

are set then which user is chosen by PF does not affect the
interference experienced in other cells.)

The PF algorithm works as follows. For each link ` ∈ Ui
basestation i maintains an estimate R` of the recent average
transmit rate on link `, and allocates power pi,c exclusively to
the link ` that maximizes the ratio r̃c,`(t)/R`, where r̃c,`(t)
is the nominal rate if user j has power allocation pi,c,j(t) =
pi,c(t). Again from (18), we have

r̃c,`(t) = wc · F
(
pi,c,j(t) · CQIc,`(t)

)
for link ` = ij (21)

After each scheduling decision R` is updated for each link
according to an exponential filter. This addresses the third
issue.

B. Methods for Implementing the Feasibility Oracle

We now examine options for the only part of the algo-
rithm that requires coordination among basestations, namely
feasibility detection. Since resource block power assignment is
typically done on a slower timescale than individual time slots,
we are interested in determining whether a set of transmissions
will be feasible over multiple timeslots. In particular, we do
not want to declare a transmission feasible if this is only true
for a single timeslot due to fast fading.

We discuss multiple mechanisms which all use techniques
that have been proposed in the standardization process for
heterogeneous networks (e.g. [1]). Our initial mechanisms use
the existing CQI channel with one extra piece of information
which we call the activity indicator. We also allow for a
basestation to “overhear” a link to which it is not associated.
Our later mechanisms show how the algorithm could be
implemented if we indeed have a channel for exchanging
information between basestations (such as the X2 channel that
is defined in LTE). The bit-rate of such channels is typically
limited and so we stress that all we need to exchange are short
messages such as the activity values. No detailed exchange of
channel state is required.

Method 1: In this method, an activity indicator is reported
along with the CQI. Specifically, let y`,r,c(t) be the binary
activity indicator that is set to one if and only if MMUO makes
a transmission 〈`, r, c〉 during time slot t. When CQIc,`(t) is
reported to basestation i for which ` ∈ Ui, y`,r,c(t) is also
reported if it is set to 1. Each basestation i listens to all
CQI that it can decode, not just the CQI for links in Ui. If
i hears y`′,r′,c = 1 for some `′ on resource block c, then
every potential transmission 〈`, r, c〉, for ` ∈ Ui and r ∈ R, is
declared infeasible. Note that this method is similar in spirit
to the Clear-to-Send (CTS) mechanism for 802.11.

Method 2: This method is less stringent than Method 1 in
declaring infeasibility. For each activity indicator y`,r,c(t) = 1
we define the safety margin to be the ratio between the
currently achievable transmission rate r̃c,`(t) and the actual
rate rc,`(t) that is used by MMUO. This achievable rate
can be computed from the CQIc,`(t) values together with
the current power levels. We assume that the safety margins
are transmitted on the CQI channel along with the activity
indicators. For some threshold υ > 1 we say that the activity



indicator is safe if the safety margin is above υ, vulnerable if
the margin is between 1 and υ, and in outage if the margin is
below 1. (Note that if we are in outage then user ` could not
receive data at rate r for the current CQI values.) Method 2 is
the same as method 1 except that basestation i does not refrain
from declaring a potential transmission on ` ∈ Ui on block c
feasible, even if it overhears an activity indicator y`′,r′,c(t) = 1
as long as this indicator is currently safe.

The exact value of υ could be a network-wide config-
ured parameter. Alternatively each basestation could gradually
lower a local estimate of υ until it observes links going into
outage.

Method 3: This method applies probing to feasibility
detection. Whenever a basestation i needs to decide if MMUO
could transmit on 〈`, r, c〉, for ` ∈ Ui, it briefly sets power
level pi,c on resource block c and observes the effects on
other users. Here pi,c is the power necessary to carry out
the transmission 〈`, r, c〉 and can be calculated as in (20).
If basestation i overhears that any activity indicator moves
into outage then it sets pi,c back to 0 and declares 〈`, r, c〉
infeasible. This method has the drawback that it could send
neighboring users into outage for short periods (and this would
need to rectified by more robust channel coding on the data
channels). However, it has the advantage that basestation i gets
a much better sense of the “damage” that might be caused by
setting a particular power level pi,c on resource block c.

Methods 4-6: The next three methods are essentially
the same as Methods 1-3. However, instead of basestations
overhearing activity indicators and their associated safety
status, each basestation would directly communicate their own
activity indicators and safety margins to all their neighboring
basestations. This can be done using a channel such as the
X2 channel in LTE that provides communication between
neighboring basestations. Note that this is a lightweight com-
munication since the activity indicator only has 2 possible
values and the safety status has only 3 possible values.
In particular the basestations would not be exchanging any
detailed channel state information.

Relationship to current LTE proposals: We now briefly
discuss how the above methods could fit with mechanisms
that have been proposed in LTE standards for interference
coordination. In the document [1] on RF requirements for
femtos, three options are proposed for communication between
macros and femtos. The first is direct over-the-air communica-
tion. The second is over-the-air via “victim” users. This would
correspond to the overhearing methods 1-3 proposed above
in that the victim user broadcasts channel quality information
that indicates to an interferer whether it is safe to transmit. The
third option is via an existing backhaul which corresponds to
methods 4-6 above.

Enhanced heuristic: Resource block prioritization:: Note
that throughout this section we have assumed that attempts
by a link to access resource block c are governed by λ`,r,c
and µ`,r,c and are performed independently across resource
blocks. However, since in heterogeneous networks we have
two classes of basestations (macros and femtos) there is

Fig. 1. Network configuration: 1 macro and 2 femtos each with 2 users.

potential to reduce interference if each class has priority on a
different set of resource blocks. We now describe a heuristic
to achieve this. In particular if basestation i is a macro we
bias it towards low numbered resource blocks by only letting
one of its users be active on a resource block if it also has
active users on all lower numbered resource blocks. More
formally, if ` ∈ Ui then 〈`, r, c〉 is feasible if for all c′ < c
there exists `′ ∈ Ui and r′ ∈ R such that y`′,r′,c′ = 1.
Similarly, if basestation i is a femto we bias it towards high
numbered resource blocks by only letting one of its users be
active on a resource block if it also has active users on all
higher numbered resource blocks. More formally, if ` ∈ Ui
then 〈`, r, c〉 is feasible if for all c′ > c there exists `′ ∈ Ui
and r′ ∈ R such that y`′,r′,c′ = 1.

VII. SIMULATION RESULTS

We now provide an example to show how the algorithms
work. We consider a simple toy example since it allows us
to compute the optimal schedule. We consider three omnidi-
rectional basestations, 1 macro and 2 femtos, together with
six users, two for each basestation. The two macro users are
at distance 100m (user 0) and 780m (user 1) respectively.
Each femto has two users (users 2-5) at distance 10m. The
exact configuration together with the user numbering is shown
in Figure 1. We assume that user 1 has to be associated
with the macro since the nearby femto is in CSG mode. The
transmit power of the macro is 46dBm and for the femtos it is
8dBm. The system bandwidth is 5MHz and the noise density
is -165dBm/Hz. We split the system bandwidth into three
resource blocks. The pathloss is represented by a COST-231
Hata model. In particular the path loss at distance d meters is
assumed to be 0.525∗d−3.523. For simplicity we consider two
instantaneous transmission rates, a “low” rate of 8bits/sec/Hz
and a “high” rate of 16bits/sec/Hz. We consider blocks.

For this configuration we aim to achieve user through-
puts that solve problem (7). We can compute the follow-
ing optimal solution offline via a standard subgradient al-
gorithm. For brevity we use notation of the form 0h2`4`
to represent a schedule, which means user 0 is receiving
data at the high rate and users 2 and 4 are receiving
data at the low rate. In the optimal solution for schedules
m ∈ {0h2`4`, 0h3`4`, 0h2`5`, 0h3`5`} we have πm = 8.4%,
for schedules m ∈ {1h4`, 1h5`} we have πm = 10.7%,
and for schedules m ∈ {2h4h, 2h5h, 3h4h, 3h5h} we have
πm = 11.2%. Figure 2 shows the corresponding optimal link
throughputs as computed by the subgradient algorithm.

The behavior of MMUO and MMUO with Proportional Fair
are similar. In the interest of space, we present the plot for



Fig. 2. Link throughputs under the optimal solution. Top curves for
users/links 0, 4 and 5; middle curves for users 2 and 3; bottom curve for
user 1. (Note that some curves coincide.)

Fig. 3. Link throughputs under MMUO in combination with PF. Top curve
for user 0; second curve for users 4 and 5; third curve for users 2 and 3;
bottom curve for user 1.

MMUO with PF only (in Figures 3). As we can see, the link
throughputs closely approximate the optimal rates in Figure 2.
In both plots, user 0 (the closer user to the macro basestation)
has the highest throughput while user 1 (the far user to the
macro basestation) has the lowest throughput. Among the
femto users, users 4 and 5 have higher throughputs since they
create less interference to a macro user than users 2 and 3.

We conclude with a brief discussion of how the algorithms
for testing feasibility work in this context. In particular sup-
pose that we are in configuration 1h4` and suppose that user
3 wants to transmit at the high rate. This is infeasible. User 3
may discover this by either a) overhearing the CQI reported
by user 1 and realizing it is sufficiently close to the minimum
acceptable CQI or b) briefly probing the channel at the high
rate and then discovering that user can no longer support its
current rate. In both cases user 3 decides not to transmit.

VIII. PREVIOUS WORK

We now describe how our work relates to existing tech-
niques. Prior work mainly falls into two categories, resource
allocation in OFDM systems and CSMA-based algorithms for
802.11 networks. As we have seen, our proposal has been to
derive an algorithm based on CSMA techniques for the case
of OFDM resource allocation.

OFDM resource allocation: LTE uses an OFDM physical
layer. Resource allocation in OFDM systems addresses prob-
lems such as channel selection, local scheduling, power control
and user association, i.e. which basestation serves which user.
One popular technique, e.g. used in [6], [4], [9], is a Gibbs
sampler approach based on Interacting Particle Systems. The
main idea here is that for a given network configuration each

node has a local energy based on the interference that it both
causes and receives. Nodes then pick new states based on
their local energy. Gibbs sampler techniques have also been
used to motivate greedy algorithms for LTE resource block
selection, e.g. [2]. Another popular technique, e.g. used in
[19], [18], is to set power levels according to a gradient ascent
approach. In particular each transmitter adjusts power levels
so as to improve network utility in its neighborhood. Both
the Gibbs sampler and the gradient ascent based methods
require information exchange on how much interference each
transmitter causes to each receiver. For the Gibbs sampler
methods interference information needs to be exchanged in
order to calculate local energy levels. For the gradient ascent
methods nodes need to exchange “partial derivative” informa-
tion to indicate how the interference they experience would
be affected by a change in a neighbor’s power levels. We
remark that MMUO does not require such detailed information
exchange. It bases its calculations on CQI messages that
are already included in LTE, augmented with the activity
indicators (and possibly safety margins).

CSMA-based Algorithms: In the classic CSMA setup all
links wish to access a single channel. Jiang and Walrand
[10] showed that CSMA can achieve any set of feasible
throughputs. Since this result, a number of papers have looked
at how to make channel access rates dependent on local queue
sizes in order to keep the system stable, e.g. [7], [8], [5], [16],
[17]. As already discussed, we have based our analysis on the
work [14] (later extended in [15], [13]) that analyzed utility
maximization in a CSMA setting.

IX. CONCLUSION

In this paper we have presented a CSMA-based scheduling
algorithm for heterogenous LTE networks with both macro and
small cells. Our main contribution is twofold. Mathematically,
our algorithm handles the general multiple transmission rates
on multiple carriers and achieves utility optimality. For the
practical setting, the communication among the basestations
utilizes the existing CQI-based technology and hence the
additional signaling is minimal.
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