Skip to main content
Log in

A path selection based routing protocol for urban vehicular ad hoc network (UVAN) environment

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Routing in urban environment is a challenging task due to high mobility of vehicles in the network. Many existing routing protocols only consider density, link connectivity, delay, and shortest path information to send the data to the destination. In this paper, a routing protocol is proposed which uses the urban road network information such as multi-lane and flyover to send the data to the destination with a minimum packet forwarding delay. The next path for data forwarding is selected based on a path value calculated by the Road Side Unit for each path connected to a junction. This protocol uses Ground Vehicle to Ground Vehicle (GV2GV) communication, Flyover Vehicle to Flyover Vehicle (FV2FV) communication, and Flyover Vehicle to Ground Vehicle/Ground Vehicle to Flyover Vehicle (FV2GV/GV2FV) communication to enhance the routing performance. Simulation results show that proposed protocol performs better than P-GEDIR, GyTAR, A-STAR, and GSR routing protocols in terms of end-to-end delay, number of network gaps, and number of hops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zeadally, S., Hunt, R., Chen, Y. S., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommunication Systems, 50(4), 217–241.

    Article  Google Scholar 

  2. Sichitiu, M. L., & Kihl, M. (2008). Inter-vehicle communication systems: A survey. Communications Surveys & Tutorials, IEEE, 10(2), 88–105.

    Article  Google Scholar 

  3. Bhoi, S. K., & Khilar, P. M. (2014). Vehicular communication: A survey. Networks, IET, 3(3), 204–217.

    Article  Google Scholar 

  4. Harri, J., Filali, F., & Bonnet, C. (2009). Mobility models for vehicular ad hoc networks: A survey and taxonomy. Communications Surveys & Tutorials, IEEE, 11(4), 19–41.

    Article  Google Scholar 

  5. Zhang, X. M., Zhang, Y., Yan, F., & Vasilakos, A. V. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. Mobile Computing, IEEE Transactions on, 14(4), 742–754.

    Article  Google Scholar 

  6. Viriyasitavat, W., Boban, M., Tsai, H. M., & Vasilakos, A. (2015). Vehicular communications: Survey and challenges of channel and propagation models. Vehicular Technology Magazine, IEEE, 10(2), 55–66.

    Article  Google Scholar 

  7. Yang, M., Li, Y., Jin, D., Zeng, L., Wu, X., & Vasilakos, A. V. (2014). Software-Defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications, 20(1), 4–18.

    Article  Google Scholar 

  8. Zhou, J., Dong, X., Cao, Z. F., & Vasilakos, A. (2015). Secure and privacy preserving protocol for cloud-based vehicular DTNs. Information Forensics and Security, IEEE Transactions on, 10(6), 1299–1314.

    Article  Google Scholar 

  9. Jiau, M. K., Huang, S. C., Hwang, J. N., & Vasilakos, A. V. (2015). Multimedia services in cloud-based vehicular networks. Intelligent Transportation Systems Magazine, IEEE, 7(3), 62–79.

    Article  Google Scholar 

  10. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. Wireless Communications, IEEE, 20(6), 91–98.

    Article  Google Scholar 

  11. Vasilakos, A. V., Li, Z., Simon, G., & You, W. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.

    Article  Google Scholar 

  12. Hafeez, K. A., Zhao, L., Ma, B., & Mark, J. W. (2013). Performance analysis and enhancement of the DSRC for VANET’s safety applications. Vehicular Technology, IEEE Transactions on, 62(7), 3069–3083.

    Article  Google Scholar 

  13. Li, F., & Wang, Y. (2007). Routing in vehicular ad hoc networks: A survey. Vehicular Technology Magazine, IEEE, 2(2), 12–22.

    Article  Google Scholar 

  14. Liu, J., Wan, J., Wang, Q., Deng, P., Zhou, K., & Qiao, Y. (2015). A survey on position-based routing for vehicular ad hoc networks. Telecommunication Systems. doi:10.1007/s11235-015-9979-7.

    Google Scholar 

  15. Lin, Y. W., Chen, Y. S., & Lee, S. L. (2010). Routing protocols in vehicular ad hoc networks: A survey and future perspectives. Journal of Information Science and Engineering, 26(3), 913–932.

    Google Scholar 

  16. Bhoi, S. K., & Khilar, P. M. (2015). RVCloud: A routing protocol for vehicular ad hoc network in city environment using cloud computing. Wireless Networks. doi:10.1007/s11276-015-1035-8.

    Google Scholar 

  17. Bhoi, S. K., & Khilar, P. M. (2015). Self soft fault detection based routing protocol for vehicular ad hoc network in city environment. Wireless Networks. doi:10.1007/s11276-015-0970-8.

    Google Scholar 

  18. Tsiachris, S., Koltsidas, G., & Pavlidou, F. N. (2013). Junction-based geographic routing algorithm for vehicular ad hoc networks. Wireless Personal Communications, 71(2), 955973.

    Article  Google Scholar 

  19. Chang, J.-M., Lai, C.-F., Chao, H.-C., & Zhu, R. (2014). An energy-efficient geographic routing protocol design in vehicular ad-hoc network. Computing, 96(2), 119131.

    Article  MATH  Google Scholar 

  20. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161173.

    Article  Google Scholar 

  21. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating Congestion + Dilation in networks via quality of routing & # x201D; Games. Computers, IEEE Transactions on, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  22. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012, March). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In INFOCOM, 2012 proceedings IEEE(pp. 100–108). IEEE.

  23. Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11), 2238–2250.

    Article  Google Scholar 

  24. Spyropoulos, T., Rais, R. N., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless networks, 16(8), 2349–2370.

    Article  Google Scholar 

  25. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (Eds.). (2011). Delay tolerant networks: Protocols and applications. Boca raton: CRC Press.

    Google Scholar 

  26. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. Communications Surveys & Tutorials, IEEE, 16(1), 92–109.

    Article  Google Scholar 

  27. Zhou, L., Zhang, Y., Song, K., Jing, W., & Vasilakos, A. V. (2011). Distributed media services in P2P-based vehicular networks. Vehicular Technology, IEEE Transactions on, 60(2), 692–703.

    Article  Google Scholar 

  28. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. Parallel and Distributed Systems, IEEE Transactions on, 25(12), 3264–3273.

    Article  Google Scholar 

  29. Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. Computers, IEEE Transactions on, 64(3), 819–832.

    MathSciNet  Google Scholar 

  30. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks.

  31. Lochert, C., Hartenstein, H., Tian, J., Fussler, H., Hermann, D., & Mauve, M. (2003, June). A routing strategy for vehicular ad hoc networks in city environments. In Proceedings of IEEE intelligent vehicles symposium, 2003 (pp. 156–161). IEEE.

  32. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on mobile computing and networking (pp. 243–254), ACM.

  33. Lochert, C., Mauve, M., Fler, H., & Hartenstein, H. (2005). Geographic routing in city scenarios. ACM SIGMOBILE Mobile Computing and Communications Review, 9(1), 69–72.

    Article  Google Scholar 

  34. Seet, B. C., Liu, G., Lee, B. S., Foh, C. H., Wong, K. J., & Lee, K. K. (2004). A-STAR: A mobile ad hoc routing strategy for metropolis vehicular communications. In Networking 2004 (pp. 989–999). Berlin:Springer.

  35. Jerbi, M., Senouci, S. M., Rasheed, T., & Ghamri-Doudane, Y. (2009). Towards efficient geographic routing in urban vehicular networks. Vehicular Technology, IEEE Transactions on, 58(9), 5048–5059.

    Article  Google Scholar 

  36. Chou, L. D., Yang, J. Y., Hsieh, Y. C., Chang, D. C., & Tung, C. F. (2011). Intersection-based routing protocol for VANETs. Wireless Personal Communications, 60(1), 105–124.

    Article  Google Scholar 

  37. Chen, Y. S., Lin, Y. W., & Pan, C. Y. (2011). DIR: diagonal-intersection-based routing protocol for vehicular ad hoc networks. Telecommunication Systems, 46(4), 299–316.

    Article  Google Scholar 

  38. Raw, R. S., & Das, S. (2013). Performance analysis of P-GEDIR protocol for vehicular ad hoc network in urban traffic environments. Wireless Personal Communications, 68(1), 65–78.

    Article  Google Scholar 

  39. Saleet, H., Langar, R., Naik, K., Boutaba, R., Nayak, A., & Goel, N. (2011). Intersection-based geographical routing protocol for VANETs: A proposal and analysis. Vehicular Technology, IEEE Transactions on, 60(9), 4560–4574.

    Article  Google Scholar 

  40. Toutouh, J., Garca-Nieto, J., & Alba, E. (2012). Intelligent OLSR routing protocol optimization for VANETs. Vehicular Technology, IEEE Transactions on, 61(4), 1884–1894.

    Article  Google Scholar 

  41. Sahu, P. K., Wu, E. H. K., Sahoo, J., & Gerla, M. (2013). BAHG: Back-bone-assisted hop greedy routing for VANET’s city environments. Intelligent Transportation Systems, IEEE Transactions on, 14(1), 199–213.

    Article  Google Scholar 

  42. Al-Rabayah, M., & Malaney, R. (2012). A new scalable hybrid routing protocol for VANETs. Vehicular Technology, IEEE Transactions on, 61(6), 2625–2635.

    Article  Google Scholar 

  43. Taleb, T., Sakhaee, E., Jamalipour, A., Hashimoto, K., Kato, N., & Nemoto, Y. (2007). A stable routing protocol to support ITS services in VANET networks. Vehicular Technology, IEEE Transactions on, 56(6), 3337–3347.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Kumar Bhoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhoi, S.K., Khilar, P.M. & Singh, M. A path selection based routing protocol for urban vehicular ad hoc network (UVAN) environment. Wireless Netw 23, 311–322 (2017). https://doi.org/10.1007/s11276-015-1155-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1155-1

Keywords

Navigation