Skip to main content

Advertisement

Log in

Efficient topology construction and routing for IEEE 802.15.4m-based smart grid networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

IEEE 802.15.4m TVWS Multi-Channel Tree PAN (TMCTP) standard that uses the vacant TV frequency of a region is the key to provide a flexible, scalable and cost-effective AMI smart grid networks. However, the performance of the IEEE 802.15.4m based AMI network can suffer from network interruption, varying transmission reliability and energy consumption problems due to the excessive number of channels and periodic channel scanning. To resolve these issues, we presented an enhanced IEEE 802.15.4m TMCTP called TVWS Orphan channel scanning with Multi-Channel Tree PAN Routing (TOMTPR). The proposed TOMTPR framework includes pilot-channel based Multi-Channel beaconing and interleaving-based TVWS orphan channel scanning. Furthermore, a capacity-aware routing tree is constructed during the neighbor discovery procedure. The proposed protocol suite is designed to provide compatibility with the IEEE 802.15.4 family standards with lower architecture complexity. The simulation results in presence of realistic AMI traffic and AMI network model show that TOMTPR can not only satisfy delay requirements of the AMI traffic, but also outperforms IEEE 802.15.4m TMCTP with IEEE 802.15.5 layer 2 mesh routing in terms of topology construction delay, end-to-end transmission reliability, and energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Son, S., & Chung, B. (2009). A korean smart grid architecture design for a field test based on power IT. In IEEE PES T&D: Asia and Pacific, Seoul, Korea.

  2. OECD (2009). Towards green ICT strategies: Accessing policies and programmers on ICT and the environment. OECD Digital Economy Papers.

  3. Bryson, J., & Gallagher, P. (2012). NIST framework and roadmap for smart grid interoperability standards, release 2.0. National Institute of Standards and Technology (NIST), Tech. Rep. NIST Special Publication 1108R2.

  4. Erol-Kantarci, M., & Mouftah, H. (2011). Wireless sensor networks for smart grid applications. In IEEE SIECPC, Riyadh, Saudi Arabia.

  5. Gungor, V., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., & Hancke, G. (2011). Smart grid technologies: Communication technologies and standards. IEEE Transactions on Industrial Informatics, 7(4), 629–639.

    Article  Google Scholar 

  6. Kim, J., Kim, D., Lim, K., Ko, Y., & Lee, S. (2012). Improving the reliability of IEEE 802.11s based wireless mesh networks for smart grid systems. Journal of Communications and Networks KICS, 14(6), 629–639.

  7. Yu, R., Zhang, Y., Gjessing, S., Yuen, C., Xie, S., & Guizani, M. (2011). Cognitive radio based hierarchical communications infrastructure for smart grid. Network, IEEE, 25(5), 6–14.

    Article  Google Scholar 

  8. Luan, W., Sharp, D., & Lancashire, S. (2010). Smart grid communication network capacity planning for power utilities. In IEEE PES, New Orleans, USA.

  9. Sheng, Z. et al. (2013). A survey on the IETF protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications 20(6), 91–98.

    Article  Google Scholar 

  10. Noguet, D., Gautier, M., & Berg, V. (2011). Advances in opportunistic radio technologies for TVWS. EURASIP Journal on Wireless Communications and Networking, 2011(1), 1–12.

    Article  Google Scholar 

  11. Sum, C., Lu, L., Zhou, M., Kojima, F., & Harada, H. (2013). Design considerations of IEEE 802.15. 4 m low-rate WPAN in TV white space. Communications Magazine, IEEE, 51(4), 74–82.

    Article  Google Scholar 

  12. Ruofei, M., Chen, H., Huang, Y., & Meng, W. (2013). Smart grid communication: Its challenges and opportunities. IEEE Transactions on Smart Grid, 4(1), 36–46.

    Article  Google Scholar 

  13. Zhang, Y., Yu, R., Nekovee, M., Liu, Y., Xie, S., & Gjessing, S. (2012). Cognitive machine-to-machine communications: Visions and potentials for the smart grid. Network, IEEE, 26(3), 6–13.

    Article  Google Scholar 

  14. 802.15.4m, I. S. (2014). IEEE standard for local and metropolitan area networksPart 15.4: Low-rate wireless personal area networks (LR-WPANs)amendment 6: TV white space between 54 MHz and 862 MHz physical layer.

  15. Sum, C., Zhou, M., Lu, L., Funada, R., Kojima, F., & Harada, H. (2012). IEEE 802.15. 4 m: The first low rate wireless personal area networks operating in TV white space. In IEEE ICON, Singapore, Singapore.

  16. Romaniello, G., Potetsianakis, E., Alphand, O., Guizzetti, R., & Duda, A. (2013). Fast and energy-efficient topology construction in multi-hop Multi-Channel 802.15.4 networks. In IEEE WiMob, Lyon, France.

  17. Karowski, N., Viana, A., & Wolisz, A. (2011). Optimized asynchronous multi-channel neighbor discovery. In IEEE INFOCOM, Shanghai, China.

  18. Herberg, U., & Clausen, T. (2011). A comparative performance study of the routing protocols LOAD and RPL with bi-directional traffic in low-power and lossy networks. In ACM PE-WASUN, New York, USA.

  19. Popa, D., Jetcheva, J., Dejean, N., Salazar, R., Hui, J., & Monden, K. (2013). Applicability statement for the routing protocol for low power and lossy networks (RPL) in AMI networks. Internet Draft.

  20. Lee, M., Zhang, R., Zheng, J., Ahn, G., Zhu, C., Park, T., et al. (2010). IEEE 802.15.5 WPAN mesh standard-low rate part: Meshing the wireless sensor networks. IEEE Journal on Selected Areas in Communications, 28(7), 973–983.

  21. Sauter, T., & Lobashov, M. (2011). End-to-end communication architecture for smart grids. IEEE Transactions on Industrial Electronics, 58(4), 1218–1228.

    Article  Google Scholar 

  22. Merlin, S., Vaidya N., & Zorzi, M. (2008). Resource allocation in multi-radio Multi-Channel multi-hop wireless networks. In IEEE INFOCOM, Phoenix, USA.

  23. Chilamkurti, N. et al. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors.

  24. Zhang, X. M., et al. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

  25. Meng, T. et al. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers, 65(1), 244–255.

    Article  MathSciNet  Google Scholar 

  26. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In MASS, Hangzhou, 14–16 Oct. 2013, pp. 182–190. doi:10.1109/MASS.2013.44.

  27. Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). EDAL: an energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.

    Article  Google Scholar 

  28. Liu, X. Y., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., et al. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.

    Article  Google Scholar 

  29. Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  30. Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

  31. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion + dilation in networks via “quality of routing. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  32. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  33. Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.

    Google Scholar 

  34. Vilajosana, X., Tuset-Peiro, P., Vazquez-Gallego, F., Alonso-Zarate, J., & Alonso, L. (2014). standardized low-power wireless communication technologies for distributed sensing applications. Sensors, 14(2), 2663–2682.

    Article  Google Scholar 

  35. Cuomo, F., & Abbagnale, A. (2013). Cross-layer network formation for energy-efficient IEEE 802.15. 4/ZigBee wireless sensor networks. Ad Hoc Networks, 11(2), 672–686.

    Article  Google Scholar 

  36. What exactly is Advanced Television Systems Committee. http://www.hdtvprimer.com/issues/what_is_atsc.html.

  37. Hossain, K., & Champagne, B. (2011). Wideband spectrum sensing for cognitive radios with correlated subband occupancy. IEEE on Signal Processing Letters, 18(1), 35–38.

    Article  Google Scholar 

  38. Chan, A., Zeng, K., Mohapatra, P., & Lee, S. (2010). Metrics for evaluating video streaming quality in lossy IEEE 802.11 wireless networks. In IEEE INFOCOM, San diego, USA.

  39. Kaabi, F., Ghannay, S., & Filali, F. (2010). Channel allocation and routing in wireless mesh networks: A survey and qualitative comparison between schemes. International Journal of Wireless and Mobile Network, 2(1), 132–151.

    Google Scholar 

  40. SX1272/73—860 MHz to 1020 MHz Low Power Long Range Transceiver. http://www.semtech.com/images/datasheet/sx1272.pdf.

  41. Mohassel, R., Fung, A., Mohammadi, F., & Raahemifar, K. (2014). A survey on advanced metering infrastructure. International Journal of Electrical Power & Energy Systems, 63, 473–484.

    Article  Google Scholar 

  42. Kim, J., Han, J., Ko, Y-B., & Filali, F. (2015). Interleaving-based orphan channel scanning for the IEEE 802.15.4m in TVWS Smart Grid Networks. In IEEE ICUFN, Sapprro, Japan.

Download references

Acknowledgments

Following are results of a study on the “Leades INdustry-university Cooperation” Project, supported by the Ministry of Education, Science & Technology (MEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Bae Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Han, J., Mir, Z.H. et al. Efficient topology construction and routing for IEEE 802.15.4m-based smart grid networks. Wireless Netw 23, 533–551 (2017). https://doi.org/10.1007/s11276-015-1164-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1164-0

Keywords

Navigation