Skip to main content
Log in

Power optimization using massive MIMO and small cells approach in different deployment scenarios

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Power optimization is an important area of concern for the wireless communication in 5G. With the increase in the number of users or subscribers, more amount of power is required for transmission, reception and processing. Hence certain methods or specific technologies should be used to minimize or optimize this power. The main contribution of the paper comprises of the use of massive multiple input multiple output and small cell access point (SCA) approach for the power optimization and the effect of frequency division duplexing and time division duplexing techniques on power optimization. This paper also predicts the optimal number of antennas at the SCA points which are helpful for increasing the degrees of freedom which helps in power optimization. Along with these ideas of power optimization, the prime focus is on the realization of these power optimization approaches on the different deployment scenarios like urban macro heterogeneous deployment scenario in the 3GPP LTE Standard and urban, sub-urban, and rural macro deployment scenario in the ITU-R M.2135 standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhang, Z., Chai, X., Long, K., Vasilakos, A. V., & Hanzo, L. (2015). Full duplex techniques for 5G networks: Self-interference cancellation, protocol design, and relay selection. IEEE Communications Magazine, 53(5), 128–137.

    Article  Google Scholar 

  2. Zhang, Z., Wang, X., Long, K., Vasilakos, A. V., & Hanzo, L. (2015). Large-scale MIMO-based wireless backhaul in 5G networks. IEEE Wireless Communications, 22(5), 58–66.

    Article  Google Scholar 

  3. Mao, Y., et al. (2015). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications, 20(1), 4–18.

    Article  Google Scholar 

  4. Niu, Y., et al. (2015). A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Networks, 21(8), 2657–2676.

    Article  Google Scholar 

  5. Lopez-Perez, D., Chu, X., Vasilakos, A. V., & Claussen, H. (2013). On distributed and coordinated resource allocation for interference mitigation in self-organizing LTE networks. IEEE/ACM Transactions on Networking, 21(4), 1145–1158.

    Article  Google Scholar 

  6. Khan, M. A., Tembine, H., & Vasilakos, A. V. (2012). Game dynamics and cost of learning in heterogeneous 4G networks. IEEE Journal on Selected Areas in Communications, 30(1), 198–213.

    Article  Google Scholar 

  7. Rusek, F., Persson, D., Lau, B., Larsson, E., Marzetta, T., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

    Article  Google Scholar 

  8. Hoydis, J., ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal of Selected Areas in Communications, 31(2), 160–171.

    Article  Google Scholar 

  9. Parkvall, S., Dahlman, E., Jöngren, G., Landström, S., & Lindbom, L. (2011). Heterogeneous network deployments in LTE—The soft-cell approach. Ericsson Review, 2, 1–5.

    Google Scholar 

  10. Hoydis, J., Kobayashi, M., & Debbah, M. (2011). Green small-cell networks. IEEE Vehicular Technology Magazine, 6(1), 37–43.

    Article  Google Scholar 

  11. Lopez-Perez, D., Chu, X., Vasilakos, A. V., & Claussen, H. (2014). Power minimization based resource allocation for interference mitigation in OFDMA femtocell networks. IEEE Journal on Selected Areas in Communications, 32(2), 333–344.

    Article  Google Scholar 

  12. Wang, C.-Y., Ko, C.-H., Wei, H.-Y., & Vasilakos, A. V. (2014). A voting-based femtocell downlink cell-breathing control mechanism. IEEE/ACM Transactions on Networking, PP(99), 1–1.

    Google Scholar 

  13. Ding, M., Lopez-Perez, D., Xue, R., Vasilakos, A. V., & Chen, W. (2014). Small cell dynamic TDD transmissions in heterogeneous networks. In 2014 IEEE International Conference on Communications (ICC), 10–14 June 2014, pp. 4881–4887.

  14. Ding, M., Lopez Perez, D., Vasilakos, A. V., & Chen, W. (2014). Dynamic TDD transmissions in homogeneous small cell networks. In 2014 IEEE International Conference on Communications Workshops (ICC), 10–14 June 2014, pp. 616–621.

  15. Niu, Y., Gao, C., Li, Y., Su, L., Jin, D., & Vasilakos, A. V. (2015). Exploiting device-to-device communications in joint scheduling of access and backhaul for mmWave small cells. IEEE Journal on Selected Areas in Communications, 33(10), 2052–2069.

    Article  Google Scholar 

  16. Bjornson, E., Kountouris, M., & Debbah, M. (2013). Massive MIMO and small cells: Improving energy efficiency by optimal soft-cell coordination. In 2013 20th International Conference on Telecommunications (ICT), 6–8 May 2013, pp. 1–5.

  17. Vorobyov, S. A., Cui, S., Eldar, Y. C., KinMa, W., & Utschick, W. (2009). Optimization techniques in wireless communications. EURASIP Journal on Wireless Communications and Networking, 2009, 567416.

    Article  Google Scholar 

  18. Cui, S., Goldsmith, A., & Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Transactions on Wireless Communications, 4(5), 2349–2360.

    Article  Google Scholar 

  19. Auer, G., et al. D2.3: Energy efficiency analysis of the reference systems, areas of improvements and target breakdown. INFSO-ICT- 247733 EARTH, ver. 2.0, 2012.

  20. Ng, D., Lo, E., & Schober, R. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transactions on Wireless Communications, 11(9), 3292–3304.

    Article  Google Scholar 

  21. Holma, H., & Toskala, A. (2012). LTE advanced: 3GPP solution for IMT advanced (1st ed.). London: Wiley.

    Book  Google Scholar 

  22. Bjornson, E., Jaldén, N., Bengtsson, M., & Ottersten, B. (2011). Optimality properties, distributed strategies, and measurement-based evaluation of coordinated multicell OFDMA transmission. IEEE Transactions on Signal Processing, 59(12), 6086–6101.

    Article  MathSciNet  Google Scholar 

  23. M Series. (2009). Guidelines for evaluation of radio interface technologies for IMT-advanced. Technical report, ITU.

  24. Dong, W., Zhang, J., Gao, X., Zhang, P., & Wu, Y. (2007). Cluster identification and properties of outdoor wideband MIMO channel. In 2007 IEEE 66th on Vehicular Technology Conference, 2007. VTC-2007 Fall, 30 September 2007–3 October 2007, pp. 829–833.

  25. Lu, Y., Zhang, J., Gao, X., Zhang, P., & Wu, Y. (2007). Outdoor-indoor propagation characteristics of peer-to-peer system at 5.25 GHz. In 2007 IEEE 66th on Vehicular Technology Conference, 2007. VTC-2007 Fall, 30 September 2007–3 October 2007, pp. 869–873.

  26. Xu, D., Zhang, J., Gao, X., Zhang, P., & Wu, Y. (2007). Indoor office propagation measurements and path loss models at 5.25 GHz. In 2007 IEEE 66th on Vehicular Technology Conference, 2007. VTC-2007 Fall, 30 September 2007–3 October 2007, pp. 844–848.

  27. Zhang, J., Gao, X., Zhang, P., & Yin, X. (2007). Propagation characteristics of wideband MIMO channel in hotspot areas at 5.25 GHZ. In IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007, 3–7 September 2007, pp. 1–5.

  28. Zhang, J., Dong, D., Liang, Y., Nie, X., Gao, X., Zhang, Y., et al. (2008). Propagation characteristics of wideband MIMO channel in urban micro- and macrocells. In IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008, 15–18 September 2008, pp. 1–6.

  29. Kumar, R., & Gurugubelli, J. (2011). How green the LTE technology can be? In Proceedings on Wireless VITAE.

  30. (2014). Further advancements for E-UTRA physical layer aspects (release 12). 3GPP TS 36.942.

  31. Sturm, J. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11–12, 625–653.

    Article  MathSciNet  MATH  Google Scholar 

  32. CVX Research Inc. (2012). CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx.

  33. Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhil Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Jha, R.K. Power optimization using massive MIMO and small cells approach in different deployment scenarios. Wireless Netw 23, 959–973 (2017). https://doi.org/10.1007/s11276-015-1174-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1174-y

Keywords

Navigation