Skip to main content
Log in

Connectivity analysis for dynamic movement of vehicular ad hoc networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Speed variation is one of the main challenges in deriving the connectivity related predictions in mobile ad-hoc networks, especially in vehicular ad hoc networks (VANETs). In such a dynamic network, a piece of information can be rapidly propagated through dedicated short-range communication, or can be carried by vehicles when multihop connectivity is unavailable. This paper proposes a novel analytical model that carefully computes the connectivity distance for a single direction of a free-flow highway. The proposed model adopts a time-varying vehicular speed assumption and mathematically models the mobility of vehicles inside connectivity. According to the dynamic movability scenario, a novel and accurate closed form formula is proposed for probability density function of connectivity. Moreover, using vehicular spatial distribution, joint Poisson distribution of vehicles in a multilane highway and tail probability of the expected number of vehicles inside single lane in a multilane highway are mathematically investigated. The accuracy of analytical results is verified by simulation. The concluded results provide helpful insights towards designing new applications and improving performance of existing applications on VANETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jakubiak, J., & Koucheryavy, Y. (2008). State of the art and research challenges for VANETs. In Proceedings of 5th IEEE consumer communications and networking conference (pp. 912–916).

  2. Blum, J., Eskandarian, A., & Hoffman, L. (2004). Challenges of intervehicle ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 5(4), 347–351.

    Article  Google Scholar 

  3. Li, F., & Wang, Y. (2007). Routing in vehicular ad hoc networks: A survey. IEEE Vehicular Technology Magazine, 2(2), 12–22.

    Article  Google Scholar 

  4. Toor, Y., Muhlethaler, P., & Laouiti, A. (2008). Vehicle ad hoc networks: applications and related technical issues. Communications Surveys and Tutorials, 10(3), 74–88.

    Article  Google Scholar 

  5. Yena, Y. S., Chaob, H. C., Changd, R. S., & Vasilakos, A. V. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modeling, 53(11–12), 2238–2250.

    Article  Google Scholar 

  6. Linfoot, S., Adarbah, H. Y., Arafeh, B., & Duffy, A. (2013). Impact of physical and virtual carrier sensing on the route discovery mechanism in noisy MANETs. IEEE Transactions on Consumer Electronics, 59(3), 515–520.

    Article  Google Scholar 

  7. Zeadally, S., Hunt, R., Chen, Y. S., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommunication System, 50(4), 217–241.

    Article  Google Scholar 

  8. Ahmed, Z., Jamal, H., Khan, S., Mehboob, R., & Ashraf, A. (2009). Cognitive communication device for vehicular networking. IEEE Transactions on Consumer Electronics, 55(2), 371–375.

    Article  Google Scholar 

  9. Viriyasitavat, W., Boban, M., Tsai, H. M., & Vasilakos, A. V. (2015). Vehicular communications: Survey and challenges of channel and propagation models. IEEE Vehicular Technology Magazine, 10(2), 55–66.

    Article  Google Scholar 

  10. Jiau, M. K., Huang, S. C., Hwang, J. N., & Vasilakos, A. V. (2015). Multimedia services in cloud-based vehicular networks. IEEE Intelligent Transportation System Magazine, 7(3), 62–79.

    Article  Google Scholar 

  11. Zhang, Z., Mao, G., & Anderson, B. D. O. (2011). On the Information propagation process in mobile vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 60(5), 2314–2325.

    Article  Google Scholar 

  12. Agarwal, A., Starobinski, D., & Little, T. D. C. (2012). Phase transition of message propagation speed in delay-tolerant vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 13(1), 249–263.

    Article  Google Scholar 

  13. Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

  14. Woungang, I., Dhurandher, S. K., Anpalagan, A., & Vasilakos, A. V. (2013). Routing in opportunistic networks. New York: Springer.

    Book  MATH  Google Scholar 

  15. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. V. (2015). Spatial reusability-aware routing in multi-hop wireless networks. Computers, IEEE Transactions on Computers,. doi:10.1109/TC.2015.2417543

    Google Scholar 

  16. Zhou, J., Dong, X., Cao, Z., & Vasilakos, A. V. (2015). Secure and privacy preserving protocol for cloud-based vehicular DTNs. IEEE Transactions on Information Forensics and Security, 10(6), 1299–1314.

    Article  Google Scholar 

  17. Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.

    Google Scholar 

  18. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  19. Spyropoulos, T., Rais, R. N. B., Turletti, T., Obraczka, K., & Vasilakos, A. V. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  20. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (2012). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  21. Yousefi, S., Altman, E., El-Azouzi, R., & Fathy, M. (2008). Analytical model for connectivity in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 57(6), 3341–3356.

    Article  Google Scholar 

  22. Ho, I. W. H., & Leung, K. K. (2007). Node connectivity in vehicularad hoc networks with structuredmobility. In Proceedings of 32nd IEEE conference on local computer networks (pp. 635–642).

  23. Spanos, D. P., & Murray, R. M. (2004). Robust connectivity of networked vehicles. In Proceedings of 43rd IEEE conference on decision and control (Vol. 3, pp. 2893–2898).

  24. Artimy, M. M., Phillips, W. J. & Robertson, W. (2005). Connectivity with static transmission range in vehicular ad hoc networks. In Proceedings of 3rd annual communication networks and services research conference (pp. 237–242).

  25. Khabazian, M., & Ali, M. K. M. (2008). A performance modeling of connectivity in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 57(4), 2440–2450.

    Article  Google Scholar 

  26. Artimy, M. M., Robertson, W., & Phillips, W. J. (2004). Connectivity in inter-vehicle ad hoc networks. Proceedings of the Canadian Conference on Electrical and Computer Engineering, 1, 293–298.

    Google Scholar 

  27. Zhang, Z., Mao, G., & Anderson, B. D. O. (2014). Stochastic characterization of information propagation process in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 15(1), 122–135.

    Article  Google Scholar 

  28. Baccelli, E., Jacquet, P., Mans, B., & Rodolakis, G. (2012). Highway vehicular delay tolerant networks: Information propagation speed properties. IEEE Transactions on Information Theory, 58(3), 1743–1756.

    Article  MathSciNet  Google Scholar 

  29. Chen, C., Du, X., Pei, Q., & Jin, Y. (2013). Connectivity analysis for free-flow traffic in VANETs: A statistical approach. Hindawi Publishing Corporation International Journal of Distributed Sensor Networks. doi:10.1155/2013/598946.

  30. Chen, C., Liu, L., Du, X. B., Wei, X. L., & Pei, C. X. (2012). Available connectivity analysis under free flow state in VANETs. EURASIP Journal of Wireless Communications and Networking. doi:10.1186/1687-1499-2012-270.

  31. Cheng, L., & Panichpapiboon, S. (2012). Effects of intervehicle spacing distributions on connectivity of VANET: A case study from measured highway traffic. IEEE Communications Magazine, 50(10), 90–97.

    Article  Google Scholar 

  32. Durrani, S., Zhou, X., & Chandra, A. (2010). Effect of vehicle mobility on connectivity of vehicular ad hoc networks. In Proceedings of the IEEE 72nd vehicular technology conference (pp. 1–5).

  33. Kafsi, M., Papadimitratos, P., Dousse, O., Alpcan, T., & Hubaux, J. P. (2008). Vanet connectivity analysis. IEEE Workshop on Automotive Networking and Applications.

  34. Nagel, R. (2010). The effect of vehicular distance distributions andmobility on VANET communications. In Proceedings of the IEEE Intelligent Vehicles Symposium, San Diego, Calif, USA (pp. 1190–1194).

  35. Cardote, A., Sargento, S., & Steenkiste, P. (2010). On the connection availability between relay nodes in a VANET. In Proceedings of IEEE globecom workshops, Miami (pp. 181–185).

  36. Wu, H., Fujimoto, R. M., Riley, G. F., & Hunter, M. (2009). Spatial propagation of information in vehicular networks. IEEE Transactions on Vehicular Technology, 58(1), 420–443.

    Article  Google Scholar 

  37. Leutzbach, W. (1998). Introduction to the theory of traffic flow. NewYork: Springer.

    Google Scholar 

  38. Godehardt, E., & Jaworski, J. (1996). On the connectivity of a random interval graph. Random Structure and Algorithms, 9(1/2), 137–161.

    Article  MathSciNet  MATH  Google Scholar 

  39. Hall, P. (1998). Introduction to the theory of coverage processes. Hoboken: Wiley.

    Google Scholar 

  40. TalebiFard, P., Leung, V. C. M., Amadeo, M., Campolo, C., & Molinaro, A. (2015). Information-centric networking for VANETs. Chapter vehicular ad hoc networks (pp. 503–524). Switzerland: Springer.

  41. Quan, W., Xu, C., Vasilakos, A. V., Guan, J., Zhang, H., & Grieco, L. A. (2014). TB2F: Tree-bitmap and bloom-filter for a scalable and efficient name lookup in content-centric networking. In Proceedings of IEEE IFIP networking conference, Trondheim (pp. 1–9).

  42. Rahimi, M. R., Ren, J., Liu, C. H., Vasilakos, A. V., & Venkatasubramanian, N. (2014). Mobile cloud computing: A survey, state of art and future directions. Mobile Networks and Applications, 19(2), 133–143.

    Article  Google Scholar 

  43. Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., & Kwon, T. T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  44. Yang, M., Li, Y., Jin, D., Zeng, L., Wu, X., & Vasilakos, A. V. (2015). Software-defined and virtualized future mobile and wireless networks: A survey. ACM/Springer Mobile Networks and Applications, 20(1), 4–18.

    Article  Google Scholar 

  45. Vasilakos, A. V., Li, Z., Simon, G., & You, W. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.

    Article  Google Scholar 

  46. Li, P., Guo, S., Yuy, S., & Vasilakos, A. V. (2012). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In Proceedings of IEEE INFOCOM (pp. 100–108).

  47. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  48. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In Proceedings of IEEE 10th international conference on mobile ad-hoc and sensor systems (pp. 182–190).

  49. Zhang, X. M., Zhang, Y., Yan, F., & Vasilakos, A. V. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

  50. Rudack, M., Meincke, M., & Lott, M. (2002). On the dynamics of ad hoc networks for inter vehicle communications (IVC). Las Vegas: In proceedings of ICWN.

    Google Scholar 

  51. Roess, P. P., Prassas, E. S., & McShane, W. R. (2004). Traffic engineering. New Jersey: Pearson/Prentice Hall.

    Google Scholar 

  52. Ross, S. M. (2011). Introduction to probability models (10th ed.). New York: Elsevier.

    Google Scholar 

  53. Yan, Z., Jiang, H., Shen, Z., Chang, Y., & Huang, L. (2012). k-Connectivity analysis of one-dimensional linear VANETs. IEEE Transactions on Vehicular Technology, 61(1), 426–433.

    Article  Google Scholar 

  54. Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired algorithm for the Steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.

    MathSciNet  Google Scholar 

  55. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  56. Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  57. Zhang, Z. Vehicular ad hoc networks. (2013). [Online]. http://zijie.net/manet/vanet/

  58. Zarei, M., Rahmani, A. M., & Farazkish, R. (2011). CCTF: Congestion control protocol based on trustworthiness of nodes in wireless sensor networks using fuzzy logic. International Journal of Ad Hoc and Ubiquitous Computing, 8(1/2), 54–63.

    Article  Google Scholar 

  59. Zarei, M., Rahmani, A. M., Farazkish, R., & Zahirnia, S. (2010). FCCTF: Fairness congestion control for a disTrustful wireless sensor network using fuzzy logic. In Proceedings of IEEE 10th international conference on hybrid intelligent systems (pp. 1–6).

  60. Zarei, M., Rahmani, A. M., Sasan, A., & Teshnehlab, M. (2009). Fuzzy based trust estimation for congestion control in wireless sensor networks. In Proceedings of IEEE international conference on intelligent networking and collaborative systems (pp. 233–236).

  61. Vasilakos, A. V., Saltouros, M. P., Atlassis, A. F., & Pedrycz, W. (2003). Optimizing QoS routing in hierarchical ATM networks using computational intelligence techniques. IEEE Transactions on Systems, Man, and Cybernetics—Part C Applications and Reviews, 33(3), 297–312.

    Article  Google Scholar 

  62. Acampora, G., Gaeta, M., Loia, V., & Vasilakos, A. V. (2010). Interoperable and adaptive fuzzy services for ambient intelligence applications. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 5(2), 8.

    Google Scholar 

  63. Manvaha, S., Srinivasan, D., Tham, C. K., & Vasilakos, A. V. (2004). Evolutionary fuzzy multi-objective routing for wireless mobile ad hoc networks. CEC2004 Congress on Evolutionary Computation, 2, 1964–1971.

    Google Scholar 

  64. Xiang, L., Luo, J. & Vasilakos, A. V. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In Proceedings of 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (pp. 46–54).

  65. Duarte, P. B. F., Fadlullah, Z Md, Vasilakos, A. V., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.

    Article  Google Scholar 

  66. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion+ dilation in networks via “Quality of Routing” games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Zarei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, M., Rahmani, A.M. & Samimi, H. Connectivity analysis for dynamic movement of vehicular ad hoc networks. Wireless Netw 23, 843–858 (2017). https://doi.org/10.1007/s11276-015-1189-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1189-4

Keywords

Navigation