Skip to main content

Advertisement

Log in

Cooperation-enabled energy efficient base station management for dense small cell networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Dense small cell networks are deployed for future wireless communication to meet the ever-increasing mobile traffic demand. However, network densification will significantly increase the energy budget and lead to energy inefficiency due to the constant operation of network hardware. In this paper, we consider cooperation-enabled dynamic base station (BS) management for downlink dense small cell networks. By introducing two traffic-aware sleep modes, i.e., deep sleep mode and opportunistic sleep mode which are operating in different time and energy consumption scales, the network hardwares are turned to be the resources that can be occupied and released dynamically. Small cell BSs (SBSs) with zero or low load are completely switched off and reside in deep sleep mode during a predefined time interval. At each time slot, SBS dynamically turn some antennas and associated physical components into opportunistic sleep mode according to the short term traffic distribution, and the users are jointly served by the remaining antennas via cooperative transmission. The corresponding sleep mode decision making are presented respectively to find the optimal number of SBS and antennas that should be switched off. Numerical results are then presented to illustrate the superior performance in terms of energy efficiency gain. In summary, the proposed cooperation-aided sleep strategies for dense small cell networks take both traffic features and optimal cooperative transmission into account, and can achieve great energy saving while maintaining required quality of service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. This is reasonable since the research in [12] shows that a switching time of 30 \(\mu s\), which is much smaller than the duration of a time slot.

References

  1. Normalized cellular traffic trace during one week (2011). http://anrg.usc.edu.

  2. Ashraf, I., Boccardi, F., & Ho, L. (2011). Sleep mode techniques for small cell deployments. IEEE Communications Magazine, 49(8), 72–79.

    Article  Google Scholar 

  3. Auer, G., Giannini, V., Desset, C., Godor, I., Skillermark, P., Olsson, M., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications, 18(5), 40–49. doi:10.1109/MWC.2011.6056691.

    Article  Google Scholar 

  4. Bhushan, N., & Li, J. (2014). Network densification: the dominant theme for wireless evolution into 5g. IEEE Communications Magazine, 52(2), 82–89. doi:10.1109/MCOM.2014.6736747.

    Article  Google Scholar 

  5. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge university press.

    Book  MATH  Google Scholar 

  6. Budzisz, L., Ganji, F., Rizzo, G., Ajmone Marsan, M., Meo, M., Zhang, Y., et al. (2014). Dynamic resource provisioning for energy efficiency in wireless access networks: A survey and an outlook. IEEE Communications Surveys & Tutorials, 16(4), 2259–2285. doi:10.1109/COMST.2014.2329505.

    Article  Google Scholar 

  7. Cao, D., Zhou, S., Zhang, C., & Niu, Z. (2010). Energy saving performance comparison of coordinated multi-point transmission and wireless relaying. In 2010 IEEE global telecommunications conference (GLOBECOM 2010), pp. 1–5. doi:10.1109/GLOCOM.2010.5683653.

  8. Chang, L., Jun, Z., & Letaief, K. B. (2014). Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations. IEEE Transactions on Wireless Communications, 13(5), 2505–2517. doi:10.1109/TWC.2014.031714.131020.

    Article  Google Scholar 

  9. Conte, A., Feki, A., Chiaraviglio, L., Ciullo, D., Meo, M., & Marsan, M. (2011). Cell wilting and blossoming for energy efficiency. IEEE Wireless Communications, 18(5), 50–57. doi:10.1109/MWC.2011.6056692.

    Article  Google Scholar 

  10. Debaillie, B., Giry, A., Gonzalez, M., Dussopt, L., Li, M., Ferling, D., & Giannini, V. (2011). Opportunities for energy savings in pico/femto-cell base-stations. In Future network mobile summit (FutureNetw), 2011, pp. 1–8.

  11. Feng, H., Safar, Z., & Liu, K. J. R. (2013). Energy-efficient base-station cooperative operation with guaranteed qos. IEEE Transactions on Communications, 61(8), 3505–3517. doi:10.1109/TCOMM.2013.061913.120743.

    Article  Google Scholar 

  12. Frenger, P., Moberg, P., Malmodin, J., Jading, Y., & Gdor, I. (2011). Reducing energy consumption in LTE with cell DTX. In 2011 IEEE 73rd vehicular technology conference (VTC Spring), pp. 1–5.

  13. Hasan, Z., Boostanimehr, H., & Bhargava, V. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys Tutorials, 13(4), 524–540. doi:10.1109/SURV.2011.092311.00031.

    Article  Google Scholar 

  14. Heliot, F., Imran, M., & Tafazolli, R. (2011). Energy efficiency analysis of idealized coordinated multi-point communication system. In 2011 IEEE 73rd vehicular technology conference (VTC Spring), pp. 1–5. doi:10.1109/VETECS.2011.5956410.

  15. Holtkamp, H., Auer, G., Bazzi, S., & Haas, H. (2014). Minimizing base station power consumption. IEEE Journal on Selected Areas in Communications, 32(2), 297–306. doi:10.1109/JSAC.2014.141210.

    Article  Google Scholar 

  16. Nie, W., Wang, X., Zheng, F.C., & Zhang, W. (2014). Energy-efficient base station cooperation in downlink heterogeneous cellular networks. In 2014 IEEE global communications conference (GLOBECOM), pp. 1779–1784. doi:10.1109/GLOCOM.2014.7037066.

  17. Niu, Z., Guo, X., Zhou, S., & Kumar, P. (2015). Characterizing energy-delay tradeoff in hyper-cellular networks with base station sleeping control. IEEE Journal on Selected Areas in Communications, 33(4), 641–650. doi:10.1109/JSAC.2015.2393494.

    Article  Google Scholar 

  18. Niu, Z., Wu, Y., Gong, J., & Yang, Z. (2010). Cell zooming for cost-efficient green cellular networks. IEEE Communications Magazine, 48(11), 74–79. doi:10.1109/MCOM.2010.5621970.

    Article  Google Scholar 

  19. Oh, E., Krishnamachari, B., Liu, X., & Niu, Z. (2011). Toward dynamic energy-efficient operation of cellular network infrastructure. IEEE Communications Magazine, 49(6), 56–61. doi:10.1109/MCOM.2011.5783985.

    Article  Google Scholar 

  20. Oh, E., Son, K., & Krishnamachari, B. (2013). Dynamic base station switching-on/off strategies for green cellular networks. IEEE Transactions on Wireless Communications, 12(5), 2126–2136.

    Article  Google Scholar 

  21. Pantisano, F., Bennis, M., Saad, W., & Verdone, R. (2012). On the dynamic formation of cooperative multipoint transmissions in small cell networks. In 2012 IEEE globecom workshops (GC Wkshps), pp. 1139–1144. doi:10.1109/GLOCOMW.2012.6477739.

  22. Rizzo, G., Rengarajan, B., & Ajmone Marsan, M. (2014). The value of BS flexibility for QoS-aware sleep modes in cellular access networks. In 2014 IEEE international conference on communications workshops (ICC), pp. 883–888.

  23. Rongpeng, L., Zhifeng, Z., Xuan, Z., Palicot, J., & Honggang, Z. (2014). The prediction analysis of cellular radio access network traffic: From entropy theory to networking practice. IEEE Communications Magazine, 52(6), 234–240. doi:10.1109/MCOM.2014.6829969.

    Article  Google Scholar 

  24. Shengqian, H., Chenyang, Y., & Molisch, A. F. (2014). Spectrum and energy efficient cooperative base station doze. IEEE Journal on Selected Areas in Communications, 32(2), 285–296. doi:10.1109/JSAC.2014.141209.

    Article  Google Scholar 

  25. Tao, H., & Ansari, N. (2013). On greening cellular networks via multicell cooperation. IEEE Wireless Communications, 20(1), 82–89. doi:10.1109/MWC.2013.6472203.

    Article  Google Scholar 

  26. Tikunov, D., & Nishimura, T. (2007). Traffic prediction for mobile network using Holt-Winter’s exponential smoothing. In 15th international conference on software, telecommunications and computer networks, 2007. SoftCOM 2007, pp. 1–5. doi:10.1109/SOFTCOM.2007.4446113.

  27. Trajkovic, L. (2009). Mining network traffic data. In IEEE international conference on intelligent computing and intelligent systems, 2009. ICIS 2009, vol. 1, pp. 1–2. doi:10.1109/ICICISYS.2009.5357946.

  28. Tukmanov, A., Ding, Z., Boussakta, S., & Jamalipour, A. (2013). On the impact of network geometric models on multicell cooperative communication systems. IEEE Wireless Communications, 20(1), 75–81.

    Article  Google Scholar 

  29. Wiesel, A., Eldar, Y., & Shamai, S. (2006). Linear precoding via conic optimization for fixed MIMO receivers. IEEE Transactions on Signal Processing, 54(1), 161–176. doi:10.1109/TSP.2005.861073.

    Article  Google Scholar 

  30. Yong, C., Pesavento, M., & Philipp, A. (2013). Joint network optimization and downlink beamforming for comp transmissions using mixed integer conic programming. IEEE Transactions on Signal Processing, 61(16), 3972–3987. doi:10.1109/TSP.2013.2261993.

    Article  MathSciNet  Google Scholar 

  31. Yu, W., & Lan, T. (2007). Transmitter optimization for the multi-antenna downlink with per-antenna power constraints. IEEE Transactions on Signal Processing, 55(6), 2646–2660. doi:10.1109/TSP.2006.890905.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61271179), “the Fundamental Research Funds for the Central Universities”, No. 2014ZD03-01, the Broadband China Project, No. ZBGF0140232200000, Beijing municipal science and technology commission research fund project "Research of 5G Network Architecture and Its Intelligent Management Technologies", No. D151100000115002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yawen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wen, X., Lu, Z. et al. Cooperation-enabled energy efficient base station management for dense small cell networks. Wireless Netw 23, 1611–1628 (2017). https://doi.org/10.1007/s11276-016-1234-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1234-y

Keywords

Navigation