Skip to main content
Log in

Incentive based scheme for improving data availability in vehicular ad-hoc networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Vehicular networks are popular in recent years to provide low cost communication medium during mobility. Vehicular Delay Tolerant Networks (DTNs) are one of the major categories of emerging technology. DTNs work on carry and forward mechanism to deliver data to the destination. The network performance gets severely affected due to reluctance shown by selfish nodes where few nodes show no interest in forwarding others data due to lack of any personal profit. The proposed mechanism is based on coalition game theory and discusses about incentive based mechanism which provides incentive to nodes which are forwarding data to forward to destination and motivates other vehicles in the network to participate in coalition to forward data. This scheme not only encourages other selfish nodes to forward their private data and other nodes’ public data as early as possible to destination but also increases reliability in the network as more nodes show their interest in selected routing protocol. The proposed scheme outperforms in overall benefit earned by individual node and whole coalition, and increases mutual cooperation which improves availability of data in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Batool, F., & Khan, S. A. (2005). Traffic estimation and real time prediction using ad hoc networks. In IEEE emerging technologies, pp. 264–269.

  2. Biswas, S., Tatchikou, R., & Dion, F. (2006). Vehicle-to-vehicle wireless communication protocols for enhancing highway traffic safety. In IEEE communications magazine, pp. 74–82.

  3. Iqbal, S., Chowdhury, S. R., Hyder, C. S., Vasilakos, A. V., & Wang, C. (2009). Vehicular communication: protocol design, testbed implementation and performance analysis. In Proceedings of international conference on wireless communications and mobile computing, Leipzig, Germany, pp. 410–415.

  4. Yu, F., & Biswas, S. (2007). Self-configuring tdma protocols for enhancing vehicle safety with dsrc based vehicle-to-vehicle communications. IEEE Journal on Selected Areas in Communications (JSAC), 25(8), 1526–1537.

    Article  Google Scholar 

  5. Saad, W., Han, Z., Debbah, M., Hjørungnes, A., & Başar, T. (2009). Coalition game theory for communication networks: A tutorial. IEEE Signal Processing Magazine, Special Issue on Game Theory in Signal Processing and Communications, 26(5), 77–97.

    Article  Google Scholar 

  6. Ray, D. (2007). A game-theoretic perspective on coalition formation. New York: Oxford University Press.

    Book  MATH  Google Scholar 

  7. Xu, Q., Mark, T., Ko, J., & Sengupta, R. (2004). Vehicle-to-vehicle safety messaging in DSRC. In Proceedings of ACM VANET, pp. 19–28.

  8. Dedicated Short Range Communications. (DSRC). http://grouper.ieee.org/groups/scc32/imwg/index.html

  9. Marti, S., Giuli, T., Lai, K., & Baker, M. (2000). Mitigating routing misbehavior in mobile ad hoc networks. In Proceedings of MOBICOM00, Boston, MA.

  10. Michiardi, P., & Molva, R. (2002). CORE: A collaborative reputation mechanism to enforce node cooperation in mobile ad hoc networks. In Proceedings of CMS’02 Portoroz, Slovenia.

  11. Refaei, M. T., Srivastava, V., DaSilva, L., & Eltoweissy, M. (2005). A reputation-based mechanism for isolating selfish nodes in ad hoc networks. In Proceedings of MobiQuitous’05, San Diego, CA.

  12. Zhou, J., Dong, X., Cao, Z., & Vasilakos, A. V. (2015). Secure and privacy preserving protocol for cloud-based vehicular DTNs. IEEE Transactions on Information Forensics and Security, 10(6), 1299–1314.

    Article  Google Scholar 

  13. Caballero-Gil, P., Molina-Gil, J., Hernandez-Goya, C., & Caballero-Gil, C. (2009). Stimulating cooperation in self-organized vehicular networks. In Proceedings of the 15th Asia-Pacific conference on communications, pp. 346-349.

  14. Tseng, F.-K., Liu, Y.-H., Hwu, J.-S., & Chen, R.-J. (2009). A secure reed–solomon code incentive scheme for commercial ad dissemination over VANETs. IEEE Transactions on Vehicular Technology, 60(9).

  15. Li, F., & Wu, J. (2008). A winning-probability-based incentive scheme in vehicular networks. In Proceedings of IEEE international conference on network protocols (ICNP), poster abstract.

  16. Li, F., & Wu, J. (2009). FRAME: An innovative incentive scheme in vehicular networks. In Proceedings of IEEE international conference on communications (ICC).

  17. Lee, S., Pan, G., Park, J., Gerla, M., & Lu, S. (2007). Secure incentives for commercial ad dissemination in vehicular networks. In Proceedings of ACM MobiHoc.

  18. Douceur, J., & Moscibroda, T. (2007). Lottery trees: Motivational deployment of networked systems. In Proceedings of ACM SIGCOMM.

  19. Rogers, P. (1998). The cognitive psychology of lottery gambling: a theoretical review. Journal of Gambling Studies, 14(2), 111–134.

    Article  Google Scholar 

  20. Saad, W., Han, Z., Debbah, M., & Hjørungnes, A. (2008). A distributed merge and split algorithm for fair cooperation in wireless networks. CoRR, vol. abs/0802.2159.

  21. Khan, M. A., Tembine, H., & Vasilakos, A. V. (2012). Game dynamics and cost of learning in heterogeneous 4 g networks. IEEE Journal on Selected Areas in Communications, 30(1), 198–213.

    Article  Google Scholar 

  22. Cho, J., & Yi, Y. (2014). On the payoff mechanisms in peer-assisted services with multiple content providers: rationality and fairness. IEEE/ACM Transactions on Networking, 22(3), 731–744.

    Article  Google Scholar 

  23. Singh, C., Sarkar, S., Aram, A., & Kumar, A. (2012). Cooperative profit sharing in coalition-based resource allocation in wireless networks. In IEEE/ACM Transactions on Networking, 20(1).

  24. Das, B., Misra, S., & Roy, U. (2013). Coalition formation for cooperative service-based message sharing in vehicular ad hoc networks. IEEE Transactions on Parallel and Distributed Systems,. doi:10.1109/TPDS.2014.2387282.

    Google Scholar 

  25. Wu, F., Chen, T., Zhong, S., Li, L., & Yang, Y. R. (2008). Incentive compatible opportunistic routing for wireless networks. In Proceedings of MOBICOM, San Francisco, CA, pp. 303–314.

  26. Saad, W., Han, Z., Hjorungnes, A., Niyato, D., & Hossain, E. (2011). Coalition formation games for distributed cooperation among roadside units in vehicular networks. IEEE Journal on Selected Areas in Communications, 29(1), 48–60.

    Article  Google Scholar 

  27. Saad, W., Han, Z., Basar, T., Debbah, M., & Hjorungnes, A. (2011). Hedonic coalition formation for distributed task allocation among wireless agents. IEEE Transactions on Mobile Computing, 10(9), 1327–1344.

    Article  Google Scholar 

  28. Zhao, J., & Cao, G. (2008). VADD: Vehicle-assisted data delivery in vehicular ad hoc networks. IEEE Transaction of Vehicular Technology, 57(3), 1910–1922.

    Article  Google Scholar 

  29. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Springer Journal of Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  30. Spyropoulos, T., Rais, R. N. B., Turletti, T., Obraczka, K., & Vasilakos, A. V. (2010). Routing for disruption tolerant networks: Taxonomy and design. Springer Journal of Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  31. Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11), 2238–2250.

    Article  Google Scholar 

  32. Zhou, J., Cao, Z., Dong, X., Lin, X., & Vasilakos, A. V. (2013). Securing m-healthcare social networks: Challenges, countermeasures and future directions. IEEE Wireless Communication, 20(4), 12–21.

    Article  Google Scholar 

  33. Zhao, J., Zhang, Y., & Cao, G. (2007). Data pouring and buffering on the road: A new data dissemination paradigm for vehicular ad hoc networks. IEEE Transaction on Vehicular Technology, 56(6), 3266–3276.

    Article  Google Scholar 

  34. Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., & Kwon, T. T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  35. Vasilakos, A., Ricudis, C., Anagnostakis, K., Pedryca, W., & Pitsillides, A. (1998). Evolutionary-fuzzy prediction for strategic QoS routing in broadband networks. In Fuzzy systems proceedings, 1998. IEEE world congress on computational intelligence. The 1998 IEEE international conference on (Vol. 2, pp. 1488–1493). IEEE.

  36. Demestichas, P. P., Stavroulaki, V. A. G., Papadopoulou, L. M. I., Vasilakos, A. V., & Theologou, M. E. (2004). Service configuration and traffic distribution in composite radio environments. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 34(1), 69–81.

    Article  Google Scholar 

  37. Zhou, L., Zhang, Y., Song, K., Jing, W., & Vasilakos, A. V. (2011). Distributed media services in P2P-based vehicular networks. IEEE Transactions on Vehicular Technology, 60(2), 692–703.

    Article  Google Scholar 

  38. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion + dilation in networks via” Quality of Routing” games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  39. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In INFOCOM, 2012 Proceedings IEEE, pp. 100–108. IEEE.

  40. Li, M., Li, Z., & Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  41. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. Communications Surveys and Tutorials, IEEE, 16(1), 92–109.

    Article  Google Scholar 

  42. Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 818–831.

    Article  MathSciNet  MATH  Google Scholar 

  43. Song, Yuning, Liu, Liang, Ma, Huadong, & Vasilakos, Athanasios V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  44. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. V. (2016). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers, 65(1), 244–255.

    Article  MathSciNet  MATH  Google Scholar 

  45. Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.

    Google Scholar 

  46. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. Wireless Communications, IEEE, 20(6), 91–98.

    Article  Google Scholar 

  47. Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust management for internet of things. Journal of Network and Computer Applications, 42, 120–134.

    Article  Google Scholar 

  48. Lewandowski, W., Azoubib, J., & Klepczynski, W. J. (1999). GPS: Primary tool for time transfer. Proceedings of IEEE, 87(1), 163–172.

    Article  Google Scholar 

  49. IEEE Draft Standard for Wireless Access in Vehicular Environments (WAVE)—Multi-Channel Operation, IEEE Std. P1609.4/D9, August 2010.

  50. Zipf, G. (1949). Human behaviour and the principle of least effort. Reading: Addison-Wesley.

    Google Scholar 

  51. Vahdat, A., & Becker, D. (2000). Epidemic routing for partially connected ad hoc networks. Duke University, Durham, NC, Technology, Rep. CS-200006.

  52. [a32]Chen, T., Zhu, L., Wu, F. & Zhong, S. (2011). Stimulating cooperation in vehicular ad hoc networks: a coalitional game theoretic approach. In IEEE Transactions on Vehicular Technology, 60(2).

  53. [a35]Network simulation, ns2. http//www.isi.edu/nsnm/ns.

  54. http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/

  55. Saha, A. K., & Johnson., D. B. (2004). Modeling mobility for vehicular ad-hoc networks. In Proceedings. of ACM VANET.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brij Bihari Dubey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, B.B., Chauhan, N., Chand, N. et al. Incentive based scheme for improving data availability in vehicular ad-hoc networks. Wireless Netw 23, 1669–1687 (2017). https://doi.org/10.1007/s11276-016-1246-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1246-7

Keywords

Navigation